Articles | Open Access |

Clinical Insights into Blood Coagulation and Viscosity: An Observational Study

Charlotte Harris , School of Dentistry & Medical Sciences, Charles Sturt University, Wagga Wagga, NSW 2650, Australia
Ava Robinson , School of Dentistry & Medical Sciences, Charles Sturt University, Wagga Wagga, NSW 2650, Australia

Abstract

The correlation between blood coagulation and viscosity plays a crucial role in understanding the dynamics of hemostasis and the risk of thromboembolic events. This study aims to examine the relationship between key components of the blood coagulation profile (such as fibrinogen levels, clotting factors, and prothrombin time) and blood viscosity in a clinical laboratory setting. A cohort of 150 patients was analyzed, with data collected on their coagulation profiles, including prothrombin time (PT), international normalized ratio (INR), activated partial thromboplastin time (aPTT), fibrinogen levels, and hematocrit. Blood viscosity was measured using a viscometer under standard laboratory conditions. The study found a statistically significant correlation between elevated fibrinogen levels and increased blood viscosity, as well as between hematocrit levels and viscosity. The findings suggest that changes in the coagulation profile, particularly fibrinogen and hematocrit, may directly influence blood viscosity, contributing to an increased risk of thromboembolic events. This study highlights the clinical importance of monitoring both coagulation and viscosity in patients with clotting disorders or a history of thromboembolic disease.

Keywords

Blood coagulation, blood viscosity, clinical laboratory study

References

Bateman, R.M.; Sharpe, M.D.; Jagger, J.E.; Ellis, C.G.; Solé-Violán, J.; López-Rodríguez, M.; Herrera-Ramos, E.; Ruíz-Hernández, J.; Borderías, L.; Horcajada, J.; et al. 36th International Symposium on Intensive Care and Emergency Medicine: Brussels, Belgium, 15–18 March 2016. Crit. Care 2016, 20 (Suppl. S2), 94. [Google Scholar] [PubMed]

Forsyth, A.L.; Giangrande, P.; Hay, C.R.; Kenet, G.; Kessler, C.M.; Knöbl, P.N.; Llinás, A.; Santagostino, E.; Young, G. Difficult clinical challenges in haemophilia: International experiential perspectives. Haemophilia 2012, 18 (Suppl. S5), 39–45. [Google Scholar] [CrossRef] [PubMed]

Briane, A.; Horvais, V.; Sigaud, M.; Trossaërt, M.; Drillaud, N.; Ternisien, C.; Fouassier, M.; Babuty, A. Bleeding management in type 3 von Willebrand disease with anti-von Willebrand factor inhibitor: A literature review and case report. EJHaem 2024, 5, 964–970. [Google Scholar] [CrossRef]

Ambrosi, P.; Juhan-Vague, I. Dyslipidemia, lipid lowering drugs and thrombosis. Arch. Mal. Coeur Vaiss. 1995, 88, 1641–1645. [Google Scholar]

Sonksen, J.R.; Kong, K.L.; Holder, R. Magnitude and time course of impaired primary haemostasis after stopping chronic low and medium dose aspirin in healthy volunteers. Br. J. Anaesth. 1999, 82, 360–365. [Google Scholar] [CrossRef]

Rosenson, R.S.; Wolff, D.; Green, D.; Boss, A.H.; Kensey, K.R. Aspirin. Aspirin does not alter native blood viscosity. J. Thromb. Haemost. 2004, 2, 340–341. [Google Scholar] [PubMed]

Cattaneo, M. Response variability to clopidogrel: Is tailored treatment, based on laboratory testing, the right solution? J. Thromb. Haemost. 2012, 10, 327–336. [Google Scholar] [CrossRef]

Bhatt, D.L.; Eikelboom, J.W.; Connolly, S.J.; Steg, P.G.; Anand, S.S.; Verma, S.; Branch, K.R.H.; Probstfield, J.; Bosch, J.; Shestakovska, O.; et al. Role of combination antiplatelet and anticoagulation therapy in diabetes mellitus and cardiovascular disease. Circulation 2020, 141, 1841–1854. [Google Scholar] [CrossRef] [PubMed]

Lowe, G.D. Virchow’s triad revisited: Abnormal flow. Pathophysiol. Haemost. Thromb. 2003, 33, 455–457. [Google Scholar] [CrossRef] [PubMed]

Roldan, V.; Marin, F.; Manzano-Fernandez, S.; Gallego, P.; Vilchez, J.A.; Valdes, M.; Vicente, V.; Lip, G.Y. The HAS-BLED score has better prediction accuracy for major bleeding than CHADS2 or CHA2DS2-VASc scores in anticoagulated patients with atrial fibrillation. J. Am. Coll. Cardiol. 2013, 62, 2199–2204. [Google Scholar] [CrossRef]

Fan, K.; Xiao, Y.; Xue, A.; Zhou, J. Clinical outcomes, management, healthcare resource utilization, and cost according to the CHA(2)DS(2)-VASc scores in Asian patients with nonvalvular atrial fibrillation. Int. J. Cardiol. 2024, 417, 132496. [Google Scholar] [CrossRef]

Nwose, E.U.; Richards, R.S.; Jelinek, H.F.; Kerr, P.G. D-dimer identifies stages in the progression of diabetes mellitus from family history of diabetes to cardiovascular complications. Pathology 2007, 39, 252–257. [Google Scholar] [CrossRef] [PubMed]

Belkhir, D.; Blibech, H.; Kaabi, L.; Miladi, S.; Jebali, M.A.; Daghfous, J.; Mehiri, N.; Laatar, A.; Ben Salah, N.; Snene, H.; et al. Laboratory findings predictive of critical illness in hospitalized COVID-19 patients in Tunisia. F1000Research 2024, 13, 918. [Google Scholar] [CrossRef]

Corrêa, H.L.; Deus, L.A.; Nascimento, D.D.C.; Rolnick, N.; Neves, R.V.P.; Reis, A.L.; de Araújo, T.B.; Tzanno-Martins, C.; Tavares, F.S.; Neto, L.S.S.; et al. Concerns about the application of resistance exercise with blood-flow restriction and thrombosis risk in hemodialysis patients. J. Sport Health Sci. 2024, 13, 548–558. [Google Scholar] [CrossRef] [PubMed]

Piech, P.; Haratym, M.; Borowski, B.; Węgłowski, R.; Staśkiewicz, G. Beyond the fractures: A comprehensive Comparative analysis of Affordable and Accessible laboratory parameters and their coefficients for prediction and Swift confirmation of pulmonary embolism in high-risk orthopedic patients. Pract. Lab. Med. 2024, 40, e00397. [Google Scholar] [CrossRef] [PubMed]

Nwose, E.U. Whole blood viscosity assessment issues II: Prevalence in endothelial dysfunction and hypercoagulation. N. Am. J. Med. Sci. 2010, 2, 252–257. [Google Scholar]

Wi, M.; Kim, Y.; Kim, C.H.; Lee, S.; Bae, G.S.; Leem, J.; Chu, H. Effectiveness and safety of Fufang Danshen Dripping Pill (Cardiotonic Pill) on blood viscosity and hemorheological factors for cardiovascular event prevention in patients with type 2 diabetes mellitus: Systematic review and meta-analysis. Medicina 2023, 59, 1730. [Google Scholar] [CrossRef] [PubMed]

Tamariz, L.J.; Young, J.H.; Pankow, J.S.; Yeh, H.-C.; Schmidt, M.I.; Astor, B.; Brancati, F.L. Blood viscosity and hematocrit as risk factors for type 2 diabetes mellitus: The atherosclerosis risk in communities (ARIC) study. Am. J. Epidemiol. 2008, 168, 1153–1160. [Google Scholar] [CrossRef]

Muldoon, M.F.; Herbert, T.B.; Patterson, S.M.; Kameneva, M.; Raible, R.; Manuck, S.B. Effects of acute psychological stress on serum lipid levels, hemoconcentration, and blood viscosity. Arch. Intern. Med. 1995, 155, 615–620. [Google Scholar] [CrossRef] [PubMed]

Nwose, E.U.; Richards, R.S.; McDonald, S.; Jelinek, H.F.; Kerr, P.G.; Tinley, P. Assessment of diabetic macrovascular complications: A prediabetes model. Br. J. Biomed. Sci. 2010, 67, 59–66. [Google Scholar] [CrossRef] [PubMed]

Nwose, E.U.; Butkowski, E.G. Algorithm for whole blood viscosity: Implication for antiplatelet bleeding risk assessment. Aust. J. Med. Sci. 2013, 34, 50–55. [Google Scholar]

Nwose, E.U.; Bwititi, P.T. Whole blood viscosity: Affordances and re-evaluation of sensitivity and specificity for clinical use. Int. J. Biol. Lab. Sci. 2022, 11, 96–103. [Google Scholar]

Cakmak, G.; Alkan, F.A.; Korkmaz, K.; Saglam, Z.A.; Karis, D.; Yenigun, M.; Ercan, M. Blood viscosity as a forgotten factor and its effect on pulmonary flow. Transl. Respir. Med. 2013, 1, 3. [Google Scholar] [CrossRef] [PubMed]

Ozcan Cetin, E.H.; Cetin, M.S.; Canpolat, U.; Kalender, E.; Topaloglu, S.; Aras, D.; Aydogdu, S. The forgotten variable of shear stress in mitral annular calcification: Whole blood viscosity. Med. Princ. Pract. 2015, 24, 444–450. [Google Scholar] [CrossRef] [PubMed]

Celik, T.; Balta, S.; Ozturk, C.; Iyisoy, A. Whole blood viscosity and cardiovascular diseases: A forgotten old player of the game. Med. Princ. Pract. 2016, 25, 499–500. [Google Scholar] [CrossRef]

Paisey, R.B.; Harkness, J.; Hartog, M.; Chadwick, T. The effect of improvement in diabetic control on plasma and whole blood viscosity. Diabetologia 1980, 19, 345–349. [Google Scholar] [CrossRef]

Zarkovic, M.; Kwaan, H.C. Correction of hyperviscosity by apheresis. Semin. Thromb. Hemost. 2003, 29, 535–542. [Google Scholar] [PubMed]

Perez Rogers, A.; Estes, M. Hyperviscosity syndrome. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2023. [Google Scholar]

Article Statistics

Copyright License

Download Citations

How to Cite

Charlotte Harris, & Ava Robinson. (2025). Clinical Insights into Blood Coagulation and Viscosity: An Observational Study. International Journal of Medical Sciences And Clinical Research, 5(03), 1–6. Retrieved from https://www.theusajournals.com/index.php/ijmscr/article/view/4724