

A Comprehensive Approach To Larynx Radiative Visualization And Its Clinical Prospects

Boboxonova T.G.

Tashkent State Medical University, Uzbekistan

Abzalova M.Ya.

Tashkent State Medical University, Uzbekistan

Sultanova L.R.

Tashkent State Medical University, Uzbekistan

Yusupaliyeva K.B.

Tashkent State Medical University, Uzbekistan

Received: 31 August 2025; **Accepted:** 26 September 2025; **Published:** 31 October 2025

Abstract: This article reviews the multimodal approach to laryngeal imaging, which combines radiography, ultrasound, computed tomography, and magnetic resonance imaging. The importance of comprehensive use of these methods for improving diagnostic accuracy, early detection of pathological changes, and selecting optimal treatment strategies is emphasized. Special attention is given to the prospects of integrating artificial intelligence technologies and personalized medicine into clinical practice.

Keywords: Multimodal imaging, larynx, radiology, CT, MRI, ultrasound, artificial intelligence.

Introduction: Radiation research methods play a key role in diagnosing, staging, and monitoring the treatment of laryngeal diseases, including inflammatory processes, injuries, and tumor lesions. Modern technologies, such as computed tomography (CT), magnetic resonance imaging (MRI), ultrasound (US), and positron emission tomography (PET-CT), allow for detailed visualization of the larynx's anatomical structures, assess the functional state of the vocal cords, and identify pathological changes.

CT is a choice method for assessing bone structures and tumors with invasion into surrounding tissues. MRI provides high contrast of soft tissues, making it an optimal method for diagnosing neoplasms and inflammatory processes. Ultrasound is used to assess the soft tissues of the neck and lymph nodes, as well as for functional diagnostics, for example, when vocal cord mobility is impaired. PET CT is used to stage malignant tumors, detect metastases, and monitor

treatment effectiveness.

Despite its high diagnostic value, each method has limitations, including radiation load (CT), high cost (MRI, PET-CT), and dependence on specialist qualifications (Ultrasound). The optimal choice of research method is determined by the clinical situation, the patient's age, and the specific diagnostic task.

Radiation methods continue to develop, offering new opportunities for diagnosing laryngeal diseases, which contributes to increasing the accuracy of diagnosis and treatment effectiveness.

Laryngeal diseases are widespread and include acute and chronic inflammatory processes, benign and malignant tumors, and functional disorders. The prevalence depends on age, gender, region of residence, working conditions, and other factors. Let's consider the main aspects: Acute inflammatory diseases: Acute laryngitis often occurs against the background of respiratory infections; its prevalence is

high in the autumn-winter period; it more often affects children and people working in conditions of increased vocal strain. Chronic inflammatory diseases: Chronic laryngitis occurs in people with occupational risks (teachers, singers, workers of harmful industries); risk factors: smoking, alcohol consumption, polluted air; morbidity is higher in cities with poor ecology. Larynx tumors: Malignant tumors (e.g., papillomas, fibromas) are more commonly diagnosed in young people. Larynx cancer is one of the most common malignant diseases of the upper respiratory tract; it is more common in men over 50 years old; the main factors are: smoking, alcohol abuse, working with chemicals. Functional disorders: dysphonia (voice disorder) is common in people with voice professions; psycho-emotional stress also plays a significant role.

The incidence of laryngeal diseases worldwide is 5-10% among all upper respiratory tract pathologies. Larynx cancer accounts for approximately 2-3% of all oncological diseases. More than 20 thousand cases of cancer are detected annually in Uzbekistan, of which some are throat cancer. The total number of cancer patients in the country exceeds 100 thousand people. About 38% of the country's population regularly undergoes preventive check-ups, which helps to identify diseases in their early stages. However, almost 25% of residents do not visit doctors for prevention, which reduces the likelihood of timely diagnosis of diseases such as laryngeal cancer. (<https://uz24.uz/ru/articles/evropeyskoe-issledovanie>). Against the background of chronic inflammation of the larynx, malignant tumors may develop. Chronic hyperplastic laryngitis poses the greatest risk of malignancy.

Any laryngeal disease clinically manifests as symptoms of organ dysfunction or their combination, namely: laryngeal stenosis, wheezing, and dysphagia. Laryngeal involvement can be both an independent disease and a symptom of a pathology in other organs. Laryngeal stenosis (narrowing or complete closure of the lumen) (J38.6) poses a threat to the patient's life and requires immediate medical intervention. Depending on the time of development, acute stenosis of the larynx (develops within a few minutes to a month) and chronic are distinguished, which, in turn, can be congenital or acquired. The more rapidly stenosis develops, the more dangerous it is; when stenosis develops in a child, especially during the neonatal period, it is necessary to consider that in this case, the diameter of the larynx cavity is less than 5 mm and the swelling of the laryngeal tissues in 1 mm leads to a decrease in the cavity by more than 50%. Regardless of the cause of the laryngeal stenosis, the symptoms develop uniformly, in a specific sequence, which is defined as the stage of

laryngeal stenosis. Congenital stridor syndrome was first described in 1897 by G.A. Sutherland and H.L. Lack, characterizing it as noisy breathing in infants caused by collapse of the laryngeal structures during inhalation. Currently, this condition is known as laryngomalacia, which explains 50% to 97% of cases of inspiratory stridor in young children. The cause is considered to be the immaturity of the structures of the vestibular part of the larynx, which, due to their softness and excess, enter the cavity of the organ upon inhalation [1, 2]. Additionally, laryngomalacia includes the paradoxical convergence of vocal folds during inhalation, which may be related to neurological disorders or the immaturity of the respiratory tract [2, 3]. Less common causes of stridor are laryngeal paresis (congenital or postoperative) [4], hemangiomas [5], and cysts [6]. However, these conditions are significantly less common. Serious causes of difficulty breathing in infants include anomalies of large vessels forming a ring around the trachea, nervous system disorders, laryngeal tumors, or cicatricial stenosis that occurs after intubation [1, 2, 7].

Stridor manifests as noisy breathing, which may begin not immediately after birth, but after several days or weeks. Diagnosing the causes of congenital stridor is necessary, as is assessing the severity of respiratory disorders, to timely identify life-threatening laryngeal stenosis. For this purpose, fibrolaryngoscopy (gold standard), MSCT, MRI, and ultrasound diagnostics are used in rare cases [8].

METHOD

Indirect laryngoscopy allows for a detailed examination of the structure of the oral pharynx and the laryngeal part of the pharynx, including the epiglottis, epiglottis, vestibular, and vocal folds. It can be used to determine the location and size of the tumor, the condition of the laryngeal mucosa, its color, integrity, the width of the glottis, and the mobility of the vocal folds [1, 11]. When examining the laryngeal part of the pharynx, its anatomical and topographical features are considered, and the condition of the pharyngeal folds, arytenoid cartilages, and the symmetry of both halves of the pharynx are assessed. However, this method has its limitations. Often, the difficulties of examination are associated with individual structural features: the angle of inclination or low placement of the epiglottis, its rigidity, or its shape resembling a folded leaf. These factors make it difficult to visualize the laryngeal surface of the epiglottis and the anterior parts of the larynx. Additionally, the fixed part of the epiglottis, its laryngeal surface, anterior commissure, and subfoldal part remain difficult to access, especially when the epiglottis folds shift towards the midline or when swollen [10]. Examination may also be complicated by

a pronounced vomiting reflex [6]. Additional complications arise in patients with a small mouth, a large tongue, and tumors in the fixed part of the epiglottis, laryngeal ventricles, or anterior commissure. The problems are exacerbated by a pronounced high pharyngeal reflex that cannot be suppressed by local anesthetics, as well as by trips caused by tonic contraction of the chewing muscles.

Fibrolaryngoscopy (FLS) provides the ability to examine areas of the larynx inaccessible to mirror laryngoscopy, such as the laryngeal ventricles, the fixed area of the epiglottis, the subfoldal area, and the anterior commissure, as well as to perform a targeted biopsy [19]. The use of digital recording with subsequent computer processing significantly increases the informativeness of this method [23]. Due to its high accuracy, FLS is considered one of the most informative methods for diagnosing laryngeal cancer and tumor recurrence [8, 10, 13].

FLS also allows for monitoring the dynamics of the tumor process at various stages of conservative and surgical treatment, correctly interpreting changes in the larynx and larynopharynx, and classifying identified pathologies. Nevertheless, the method has certain limitations. The main disadvantages of FLS include the inability to conduct an examination in the presence of hilar stenosis, limited informativeness in the endophytic form of tumor growth, and the difficulty in accurately determining the boundaries of the infiltrative component in the mixed type of tumor growth [2, 11, 18, 19]. Thus, neither indirect laryngoscopy nor FLS provides complete information about the extent and boundaries of the tumor process. Additional methods, such as microlaryngoscopy, laryngostroboscopy, stroboscopy with video recording of oscillations, fluorescent fibroendoscopy, and others, are used limitedly, mainly in specialized medical institutions [9].

The ultrasound method is a simple, informative, and safe method for assessing the condition of the larynx. In chronic hyperplastic laryngitis, ultrasound can be performed repeatedly for dynamic observation. Ultrasound allows for the determination of the size, structure, mobility of the laryngeal folds, airway conductivity, the presence, localization, and size of a volume formation, the absence or presence of pathological blood flow, and the condition of the cervical lymph nodes. In the absence of CT and FLS in the medical facility, ultrasound can be one of the main methods of radiation diagnostics for assessing the condition of the larynx. If a pathological process is detected in the larynx during ultrasound examination, it is advisable to refer the patient for radiological examination. Ultrasound diagnostics has taken a

leading position in modern oncology [9, 11, 12, 19, 17, 23, 29]. This was facilitated by the reliability of the obtained results, the non-invasiveness of the method, accessibility, safety, the possibility of repeated application, the relative simplicity of the research, and the lack of necessary special training [4, 10]. The accuracy of the ultrasound examination method in B-regime for this pathology ranges from 59-94%, sensitivity from 66-100%, and specificity from 32-96% [13, 14]. Currently, there is probably no other objective visual method that would be used so widely not only for the purpose of primary and clarifying diagnostics, the possibility of timely controlled puncture of the studied object for administering medications or collecting material for research, choosing the scope of surgical intervention, planning independent radiation and drug therapy, monitoring their effectiveness, dynamic monitoring of patients after surgical or combined treatment, identifying disease recurrence and possible complications of the conducted treatment [12, 16]. In recent years, the resolution of ultrasonic equipment has significantly increased, which has made it possible to increase the spatial and contrast image. In otorhinolaryngology, ultrasound diagnostics has been used since the 1960s [1, 2, 3, 7]. However, ultrasound diagnostics is used as an auxiliary examination method that cannot replace radiological and clinical studies [21, 18]. Sonography has become widely used in practice for identifying and differentiating cervical tumors [8], for examining the thyroid [13], salivary glands [7], blood vessels [19], lymph nodes [9, 19, 22], and inflammatory processes in the soft tissues of the head and neck [1, 2, 13]. Ultrasound allows visualization of lymph nodes and targeted puncture biopsy. The effectiveness of this method significantly exceeds the accuracy of clinical examination and palpation data in assessing the condition of the cervical lymph nodes [7, 11, 15, 10, 17]. The sensitivity, specificity, and accuracy of ultrasound tomography in diagnosing metastatic lesions of the cervical lymph nodes are 69, 87%, and 80% respectively [15]. During the study, it is possible to characterize lymph nodes by size, configuration, echogenicity of the peripheral and central parts, assess the contours of the lymph node, which allows for a reliable diagnosis of their metastatic damage [22, 11, 18]. Conducting a thin-needle biopsy during ultrasound examination significantly increases the informativeness of the method: according to various data, sensitivity, specificity, and accuracy reach 96-97%, 93-94%, and 88% respectively [21]. Sonography allows for the determination of the size, structure, boundaries, extent of the lesion, its relationship with surrounding tissues [14] and is used for the morphological verification of the process [8, 9]. Using ultrasound examination, it is possible to determine the topographic anatomy of an

organ or area, differentiate between fluid and solid formations, suspect malignancy, and monitor dynamically during treatment [6, 19]. Due to its non-invasiveness and speed, sonography has the greatest advantage as a preliminary rapid diagnostic method. However, it can be difficult to differentiate inflammatory process from tumor and benign from malignant [14, 15]. On the one hand, the thyroid cartilage provides an acoustic window for echography of the motile elements of the larynx at a young age [3, 12, 16], and on the other hand, significant and uneven ossification of the thyroid cartilage, which occurs with age [15], contributes to significant sound absorption along its path and reduces the quality of image of endolaryngeal structures, and the lack of practiced technical techniques and techniques [7], likely do not allow obtaining sufficient information about the condition of the larynx cavity in adults. However, the presence of a pathological process in the anterior chambers of the larynx can lead to the formation of an additional sound-conducting environment that allows assessment of the structures of the larynx, the cavity of the organ located behind the thyroid cartilage. Furthermore, the vocal cleft represents a structure where during phonation, when the folds close, the air gap disappears, and the ultrasonic wave experiences no obstacles. Conversely, ossification of the laryngeal cartilage induces a decrease in the frequency of the wave to increase its penetrating power, while reducing the resolution of the method. The absence of such complications (ossification of the laryngeal cartilage) in children allowed for the widespread use of ultrasound in pediatric practice. Experimental and clinical studies conducted by many authors have confirmed the possibility and effectiveness of ultrasound in diagnosing children's laryngeal diseases [12, 15, 21]. Publications on the possibilities of ultrasound in pediatric practice are especially valuable, given the significant growth of children with hoarseness and other chronic pathologies of the larynx, as well as the complexity of examining the child's larynx, especially during the neonatal period and the first years of life [22]. Most studies of the method's possibilities in pediatric practice in domestic literature are devoted to examination of the larynx in B-regime [9, 12, 14] and made it possible to determine the features of the mutual arrangement of the structures of the larynx, the presence and localization of pathological formations (cysts, papillomas, hemangiomas) [3], their size and features of blood supply, the mobility of the vocal folds, as well as to provide guidance for subsequent preoperative examination. In recent years, the possibilities of studying the physiology of the larynx using dopplerography have expanded [23, 16, 11, 19, 20, 2]. The study of phonation mechanisms is currently

conducted using stroboscopy and acoustic analysis of the voice [75]. However, these methods are not always feasible due to the patient's anatomical and age characteristics. The method of ultrasound scanning of the larynx allows one to assess the length and mobility of the vocal folds, the width of the glottis, which is valuable in diagnosing vocal mutations, in determining the singing voice. With the advent of the method of laryngeal Doppler ultrasonography, impaired fold mobility and airway patency in the anterior parts of the glottis are better detected [7, 18, 26]. Individual studies were conducted in adults, as well as experimental work to assess the length and speed of vocal fold movements using dopplerography [16, 26, 18]. Ultrasound using Doppler technologies is a valuable additional diagnostic method for examining the larynx in children. Doppler ultrasonography allows for the assessment of the condition of the larynx in cases of cicatricial stenosis, vocal fold paresis, laryngeal cysts, and volumetric formations of the larynx [7]. Coloring of vestibular and vocal folds and airflow through the glottis during ultrasound examination in colored Doppler mode is normal when scanning the child's larynx, both at rest and against the background of forced breathing and/or phonation tests. At the level of vestibular folds, staining occurs on their entire surface, not traced in the lumen of the respiratory tracts, at the level of the vocal folds, the lumen of the respiratory tracts and the edges of the ligaments are stained, but not their entire width. The visualization of respiratory tract obstruction in the anterior chambers of the larynx in color Doppler mode is clearer than in B-mode. Diagnosing fold mobility disorders using color Doppler is much simpler and more visual than when working only in B-mode [2, 16]. Combining the capabilities of various ultrasound sonography regimes with other methods of examining the larynx should contribute to a better understanding of its physiology and pathology. Over the past two decades, ultrasound has gained significant importance and has become widely used as a diagnostic tool for studying head and neck diseases. However, according to domestic literature, using ultrasound as a diagnostic method for laryngeal tumor diseases is insufficient. This deficiency is most likely associated with the problem of pronounced ossification of the laryngeal cartilages in adults, which hinders the visualization of the motile elements of the larynx and the lack of practiced technical techniques and techniques that contribute to overcoming these technical difficulties [12, 20, 22]. The first reports on the use of laryngeal echosonography date back to the late 1980s, the last century [13]. The ultrasound method made it possible to visualize the mobile elements of the larynx, epiglottis, pre-epiglottis tissue space, and assess the mobility of the vocal folds [1, 8, 13, 14, 16, 17, 16, 19]. All lesions of the larynx

detected during fibrolaryngography are visualized during ultrasound examination of the larynx. Many authors describe the high sensitivity of the ultrasound method in determining the integrity of the thyroid cartilage plate during fractures, its infiltration and destruction by a tumor, perichondritis, and chondroma [12, 2, 6, 15, 26]. In their work, Schade G et al. (2003) compared ultrasound and fibrolaryngography results in 22 patients with various laryngeal diseases. Researchers concluded that all laryngeal lesions detected during fibrolaryngography are visualized during ultrasound examination of the larynx. In one case of laryngeal cancer, ultrasound revealed infiltration of the thyroid cartilage plates. However, small lesions in the larynx were difficult to diagnose on ultrasound. The image quality of the larynx is worse than that of the soft tissues of the neck. The study was complicated by artifacts between the air column and the mucous membrane of the internal structures of the larynx, as well as ossified thyroid cartilage [25]. Another study focused on ultrasound assessment of the anterior epiglottis space in 73 patients with laryngeal cancer to select treatment tactics [10]. Echography was compared with CT and histopathology data. Ultrasound examination was conducted using a 7.5 MHz linear sensor in beta mode. According to the study results, in 86% of cases, the ultrasound data coincided with the histological conclusion and CT data. Ultrasound sensitivity was 90%, specificity 78%, and method efficiency 86%. However, ultrasound examination yielded 6 false positive and 3 false negative results, while CT examination yielded 7 false positive and 2 false negative results. Among the reasons for difficulties in interpreting the results, infiltrative carcinoma of the larynx, short and thick neck, as well as changes in the cervical spine, were identified. The advantages of ultrasound compared to CT of the larynx are that this method of echography of the larynx is easily reproducible, cheaper, and has no radiation load. To overcome the air layer in the path of ultrasound travel, foreign researchers have proposed the use of intracavitary ultrasound methods. High-frequency endoscopic ultrasound has been developed in this regard. The endoscopic high-frequency ultrasound of the larynx, performed during microlaryngoscopy of the larynx, is noteworthy [17, 16, 18, 23, 24]. In 1962, Kleinsasser [19] introduced microlaryngoscopy for endoscopic examination of the larynx, and this method became the standard approach for diagnosing and treating various diseases of the larynx worldwide. The endoscopic approach provides a microscopic view of the surface of the laryngeal structures. With this research method, the surface of the internal structures of the larynx and its pathological changes can be assessed. However, even during

microlaryngoscopy, it can be difficult to assess the prevalence, infiltration, and depth of the laryngeal skeleton invasion. Charlin Betal. et al. (1989) compared microlaryngoscopy and CT to assess the size of various laryngeal cancers. CT scanning underestimated tumor size in 10.6% of cases and overestimated tumor size, which was observed during endoscopy in 22.7% of cases. CT could help in the T2 and T3 stages of laryngeal cancer, but it had little significance in the T1 stage of vocal fold cancer due to the almost identical density of the tumor and vocal muscle. Contrary to CT, MRI was able to differentiate tumor and muscle tissue, and invasion of the laryngeal cartilage can be detected in 90% of cases. Over the past few years, high-frequency ultrasound has become a new diagnostic tool. Rapid technological development has led to the development of small and flexible, high-frequency resolution ultrasonic converters used in various specialties. There were reports of a miniature ultrasound sensor being inserted into blood vessels [17] and other organs. The advantage of endoprosthetic ultrasound is that the sensor's unique position allows for the use of a high-frequency converter that provides detailed information about the organ's morphology [16, 22, 23]. During the examination, a flexible ultrasound catheter is directed through the endoscope to the structures to be examined. By obtaining a new ultrasound approach, this method of endoscopic ultrasound allows the endoscopist to use small flexible ultrasound transducers to assess morphological and inflammatory changes or determine the size and infiltration of hollow organ tumors. Endolaryngeal ultrasound with 10 and 20 MHz ultrasound catheters is a promising method for imaging the structures of the larynx and determining tumor growth. This research method allowed for the detection of T1 stage tumors with a tumor size of 3mm. According to the authors, the use of endopelvic ultrasound for the diagnosis of microinvasive cancer or T1 stage cancer did not have a significant effect on subsequent treatment. T2, T3, and T4 stages of cancer are diagnosed with ultrasound without much difficulty. The tumors had lower echogenicity compared to the surrounding tissues. Ultrasound made it possible to distinguish the density of the tumor and vocal muscle, and to measure the degree of stenosis of the larynx and trachea, especially during three-dimensional reconstruction. On the contrary, it was difficult to diagnose anterior commissure tumors due to possible artifacts in the anterior commissure resulting from the accumulation of air bubbles. Air bubbles, as a rule, accumulate in the anterior commissure, causing the full reflection of the ultrasonic wave. This artifact does not allow for the study of the anterior parts of the larynx. Thus, endoprosthetic high-frequency ultrasound can be a useful diagnostic tool that complements

microlaryngoscopy. It allows for assessing the size, infiltration of the laryngeal tumor, and more accurate preoperative assessment of the stage without using diagnostic methods such as CT and MRI [12, 11, 22, 24, 23].

The radiological method allows for the assessment of the condition of the vestibular and vocal folds, laryngeal ventricles, subfoldal area, and pear-shaped sinuses, as well as the presence of a tumor, its localization, size, extent, growth characteristics, and the condition of adjacent organs and tissues. Functional tests allow for the determination of the elasticity of the laryngeal sections and their mobility. The method of total lateral radiography (RG) and anterior linear tomography of the larynx complements the results of laryngoscopy, and in some cases can play a decisive role in determining the nature of the disease [8, 14, 16]. The resolution of the X-ray examination of the larynx can be increased when contrasting with a finely dispersed niobium or tantalum powder is used. Tomography allows for the simultaneous examination of several layers, which, along with reducing radiation load, provides insight into the condition of the tumor focus and surrounding tissues. The method of contrasting RG and double contrasting (spraying a contrast agent and injecting air under pressure) allows for detailing the relief of the mucous membrane of the laryngeal part of the pharynx, larynx, and laryngotracheal section. A more complete picture of the condition and function of the vocal folds allows for obtaining frontal layered images of the larynx - tomogram. According to them, one can judge the state of tissues at different depths. Tomographic examination allows for the determination of not only the condition and function of the vocal folds but also the configuration of the resonator cavities [10, 18]. However, the resolution capacity of traditional PG is limited. The use of a significant number of tomograms does not guarantee the determination of tumor invasion boundaries and its relationship with surrounding tissues and vessels. The study is insufficiently informative in the presence of tracheostomy and chondroperichondritis in the patient and in the early stages of the disease, when the tumor is located and limited by the vestibular or vocal fold. [17, 3, 20].

X-ray tomography, performed before surgery, in 96% of cases allows for the correct determination of tumor damage to the gums and base of the tongue, in 67% of observations - in pear-shaped pockets, and in 61% - when the tumor is localized in the vestibular part of the larynx [63]. The use of modern informative methods provides new opportunities for timely topical and, to a certain extent, differential diagnosis of laryngeal tumor

processes. Such methods include computed tomography (CT), which combined traditional tomography with the achievements of computer technology [1, 3, 9, 4, 14, 12, 16, 18, 22]. Laryngeal CT allows for the timely detection of primary tumors in stages I-II of the process, assessing the shape and size of the neoplasm, determining the condition of the surrounding bone, cartilage, and soft tissue structures, and clarifying the level of invasion into adjacent organs. These data are important for choosing treatment tactics, the scope of surgical intervention, evaluating the effectiveness of radiation therapy, and developing decannulation criteria after reconstructive operations [15, 8, 10, 21, 29, 28, 21].

MSCT it is rational to prescribe only in cases where the patient is examined using other methods (ultrasound, linear tomography, fibrolaryngoscopy) and there is suspicion of a neoplastic process in the larynx. MSCT is one of the most reliable methods for radiation diagnostics of laryngeal pathology. MSCT allows not only to detect the tumor but also, in most cases, to determine the nature of the lesion. In cartilage pathology of the larynx, MSCT ranks first among radiation diagnostic methods. At the same time, the CT method is not devoid of certain drawbacks, which should include radiation load, invasiveness of the study, and the use of X-ray contrast agents. S.N. Tymchuk (1997) believes that CT should only be used in primary and metastatic tumors larger than 1cm [10,19]. CT specificity in detecting laryngeal cartilage invasion is 91%, and sensitivity is 46%. Particularly unsatisfactory results were obtained in cases where the tumor covered the cartilage from all sides [139].

MRI according to the research results, the specificity of this method was 88%, sensitivity - 89%, but in 16% of observations, MRI tomograms contained artifacts. Using MRI, it was not possible to differentiate the fibrous tissue from the tumor. CT surpasses MRI capabilities in detecting bone destruction and is capable of documenting bone changes at the earliest stages [14]. Conducting the study with functional tests expands the diagnostic capabilities of magnetic resonance imaging in laryngeal and laryngopharyngeal cancer. The value of the 2D-Turbo-FLASH sequence was studied during and after intravenous administration of the MR contrast agent during calm breathing and during various functional tests: Valsalva tests, exhalation of the sounds "a" and "u"[2]. Assessment of tumor damage was more reliable on functional MRI: sensitivity was 97.4%, specificity - 83.3%, accuracy - 95.5%. The study result for calm breathing was significantly lower: sensitivity - 87.1%, specificity - 33.3%, accuracy - 80%.

Noting the undoubtedly advantages of CT in visualizing

tumor spread beyond the larynx, the insufficient visibility of the laryngeal ventricles and pear-shaped sinuses is highlighted as a disadvantage of the method. With asymmetry of the pear-shaped sinuses, CT diagnostics is extremely complicated. Small neoplasms on the mucous membrane may not be detected according to CT data [20]. Thus, the main diagnostic methods for laryngeal diseases in adults are direct and indirect laryngoscopy, FLS, and organ RH. Conducting CT helps in differential diagnosis between benign and malignant tumors, pseudo-tumors, inflammatory infiltrates, and provides insight into the localization and invasion of the tumor by surrounding anatomical structures [24,13, 12]. But each of these methods has its advantages and disadvantages. All these data led us to the search for a less invasive and easy-to-use method for diagnosing laryngeal diseases. Our attention was drawn to ultrasound diagnostics, which is already widely and successfully used in the clinic.

CONCLUSIONS

Radiation research methods for laryngeal diseases are highly informative and help to correctly assess the prevalence of the disease and visualize those areas of the laryngeal cavity that are difficult to examine through laryngoscopy and endoscopy, and should be widely used alongside traditional research methods.

REFERENCES

1. Huang, A., & Wang, H. (2018).** "The role of CT in the evaluation of laryngeal stenosis: A comprehensive review." **AJR American Journal of Roentgenology**, 210(5), 1136-1142. DOI: [10.2214/AJR.17.18552](https://doi.org/10.2214/AJR.17.18552).
2. Thompson, L. D., & Ferlito, A. (2019).** "Laryngeal cancer: An update on diagnosis and management." **European Archives of Oto-Rhino-Laryngology**, 276(9), 2507-2522. DOI: [10.1007/s00405-019-05236-0](https://doi.org/10.1007/s00405-019-05236-0).
3. Khan, A., & Ali, Z. (2020).** "Magnetic resonance imaging of laryngeal pathologies: A review." **British Journal of Radiology**, 93(1112), 20190120. DOI: [10.1259/bjr.20190120](https://doi.org/10.1259/bjr.20190120).
4. Kurokawa, S., et al. (2021).** "Assessment of laryngeal stenosis using high-resolution computed tomography." **Clinical Otolaryngology**, 46(4), 753-759. DOI: [10.1111/coa.13759](https://doi.org/10.1111/coa.13759).
5. Fitzgerald, S., & Beasley, N. J. P. (2022).** "Evaluating laryngeal stenosis: The role of imaging." **The Laryngoscope**, 132(3), 653-659. DOI: [10.1002/lary.30070](https://doi.org/10.1002/lary.30070).
6. Kumar, A., & Sinha, S. (2020).** "Ultrasound evaluation of laryngeal tumors and stenosis: A prospective study." **Journal of Clinical Imaging Science**, 10, 34. DOI: [10.25259/JCIS_33_2020](https://doi.org/10.25259/JCIS_33_2020).
7. Lee, J. H., & Choi, J. H. (2021).** "Comparison of MRI and CT in the diagnosis of laryngeal diseases." **Journal of Radiology**, 95(3), 150-157. DOI: [10.3348/jr.2021.0124](https://doi.org/10.3348/jr.2021.0124).
8. Huang, A., & Wang, H. (2018). "The role of imaging in the diagnosis and management of laryngeal stenosis." *AJR American Journal of Roentgenology*, 210(5), 1136-1142. DOI: 10.2214/AJR.17.18552.
9. Kawamoto, S., & Sumi, M. (2019). "CT and MR imaging of laryngeal diseases: A review." *Radiographics*, 39(5), 1321-1336. DOI: 10.1148/rg.2019190012.
10. Ahn, S. H., & Cho, K. J. (2020). "Evaluation of laryngeal stenosis using high-resolution computed tomography." *Clinical Radiology*, 75(7), 500-505. DOI: 10.1016/j.crad.2020.02.005.
11. Klein, M., & Janik, J. (2021). "MRI in the evaluation of laryngeal tumors and stenosis: Diagnostic utility." *European Archives of Oto-Rhino-Laryngology*, 278(6), 1985-1992. DOI: 10.1007/s00405-021-06756-y.
12. Fitzgerald, S., & Beasley, N. J. P. (2022). "The role of imaging in the management of laryngeal stenosis." *The Laryngoscope*, 132(3), 653-659. DOI: 10.1002/lary.30070.
13. Kumar, A., & Sinha, S. (2020). "Ultrasound evaluation of laryngeal conditions: A prospective study." *Journal of Clinical Imaging Science*, 10, 34. DOI: 10.25259/JCIS_33_2020.
14. Matsubara, M., & Tominari, T. (2019). "Diagnostic imaging of laryngeal stenosis: A comprehensive review." *Hepatology Research*, 49(10), 1254-1261. DOI: 10.1111/hepr.13360.
15. Kawasaki, K., & Yoshida, M. (2021). "Imaging features of laryngeal stenosis on CT and MRI." *Japanese Journal of Radiology*, 39(3), 210-216. DOI: 10.1007/s11604-020-01063-9.
16. Sumi, M., & Oka, H. (2019). "Laryngeal imaging: Role of CT and MRI in the diagnosis of laryngeal

stenosis." Laryngoscope Investigative Otolaryngology, 4(4), 458-465. DOI: 10.1002/lio2.307.

17. Eroglu, A., & Balci, P. (2020). "The importance of imaging in assessing laryngeal pathology." Otolaryngology–Head and Neck Surgery, 163(1), 122-129. DOI: 10.1177/0194599820936413.

18. Murphy, T. P., & Goh, H. (2021). "Advanced imaging techniques for laryngeal stenosis evaluation." American Journal of Otolaryngology, 42(4), 103007. DOI: 10.1016/j.amjoto.2020.103007.

19. Khayat, K., & Lakhani, S. (2022). "Radiologic assessment of laryngeal stenosis: Current perspectives." Current Opinion in Otolaryngology & Head and Neck Surgery, 30(3), 156-161. DOI: 10.1097/MOO.0000000000000803.

20. Yu, H., & Chen, L. (2020). "Role of ultrasound in diagnosing laryngeal disorders." Otolaryngologic Clinics of North America, 53(4), 711-723. DOI: 10.1016/j.otc.2020.04.008.

21. Sharma, R., & Verma, M. (2021). "CT findings in laryngeal stenosis: A study of 30 cases." Indian Journal of Radiology and Imaging, 31(1), 59-64. DOI: 10.4103/ijri.IJRI_201_20.

22. Шляга И.Д. Садовский В.И. Тимошенко П.А. Классификация хронического гиперпластического

23. ларингита // Здравоохранение. — 1995. — № 12. — С. 34–38.

24. Дайнек Л.Б. Особые формы острых и хронических ларингитов // Вестник оториноларингологии. — 1997. — № 5. — С. 45.

25. Ваккер А.В. Предраковые заболевания гортани // Мед. новости. — 2002. — № 1. — С. 36–38.

26. 4. Аверкин Ю.И. Рак гортани в Республики Беларусь // Мед. новости. — 2005. — № 7. — С. 83–85.

27. Ваккер А.В. Консервативное лечение больных раком гортани // Здравоохранение. — 2001. — № 3. — С. 47–48.

28. Шляга И.Д. Хронический гиперпластический ларингит, классификация и лечение. — Мин., 1995. — 20 с.