

The Relevance Of Improving Diagnostic And Therapeutic Measures For Viral Hepatitis

Zukhra Nuruzova Abdukadirovna

Head of the Department of Microbiology, Virology and Immunology of Tashkent State Medical University, Doctor of Medical Sciences, Professor, Uzbekistan

Received: 30 October 2025; **Accepted:** 26 November 2025; **Published:** 31 December 2025

Abstract: This review aims to summarize the current evidence on the treatment of viral hepatitis, focusing on its clinical management. Also, future treatment options and areas of potential research interest are detailed. PubMed and Scopus databases were searched for primary studies published within the last ten years. Keywords included hepatitis A virus, hepatitis B virus (HBV), hepatitis C virus, hepatitis D virus (HDV), hepatitis E virus, and treatment. Outcomes reported in the studies were summarized, tabulated, and synthesized. Significant advances in viral hepatitis treatment were accomplished, such as the advent of curative therapies for hepatitis C and the development and improvement of hepatitis A, hepatitis B, and hepatitis E vaccination. Targeted antiviral medications against HBV (immunomodulatory therapies and gene silencing technologies) are potential ways to eradicate the virus, however there are currently no pharmaceuticals that cure hepatitis B beyond viral suppression. In the end, widespread test-and-treat initiatives with high screening rates and high immunization rates may eradicate viral hepatitis and lessen its impact on healthcare systems. Although more research is needed, the discovery of a cure for hepatitis C has rekindled interest in curing hepatitis B. Clinical research is now being conducted on novel therapy approaches that target the HDV life cycle. It is possible to avoid viral hepatitis A, B, and E infections with effective vaccinations. Over 90% of people with chronic hepatitis C can be cured with new oral, well-tolerated therapy regimens. People with chronic hepatitis B virus infection can also receive effective therapy; however, for the majority of patients, this treatment must be long-term, and more recent advancements hope to provide a "functional cure" for hepatitis B. The latest recent developments in viral hepatitis diagnosis and therapy are covered in this review article.

Keywords: Hepatitis A virus, hepatitis B virus, hepatitis C virus, hepatitis D virus, hepatitis E virus.

Introduction: Despite advancements in antiviral medication and effective vaccinations, viral hepatitis continues to have a significant global burden. Hepatitis A, B, C, D, and E are the five types of hepatitis viruses. Along with HIV infection, malaria, and tuberculosis, hepatitis B and hepatitis C virus infections rank among the top four infectious diseases in the world in terms of mortality. About 47% of such deaths can be attributed to the hepatitis B virus, 48% to the hepatitis C virus, and the remaining portion to the hepatitis A and hepatitis E viruses. With the tools and strategies now in use, hepatitis epidemics can be stopped as a serious threat to public health. Because viral hepatitis can become chronic and ultimately result in the development of end-stage liver disease and/or hepatocellular carcinoma (HCC), it is a serious public health concern.

As a result, one of the most common reasons for liver transplantation is viral hepatitis, which adds to the mismatch between the supply and demand of donor organs. Hepatitis B and C frequently cause chronic infection and are accountable for the most detrimental effects of this illness, whereas hepatitis A and E typically have a self-limited course followed by full recovery. The World Health Organization (WHO) estimates that 71 million persons have HCV viremia and 100 million have antibodies against the hepatitis C virus (HCV) globally [1-7]. The prevalence of the hepatitis B virus (HBV) surface antigen (HBsAg) was 3.61% in a multicenter worldwide research involving 161 countries [6]. The WHO has established goals to eradicate hepatitis B and C by 2030 due to the high prevalence. These goals include enhancing the availability of antiviral therapies and maximizing efforts

to stop the spread of illness. Rapid and substantial progress has been made in the past ten years in the diagnosis, treatment, and management of viral hepatitis. Problems with viral hepatitis screening, diagnosis, referral, and treatment continue despite these developments. Pandemics and endemics of viral hepatitis have a severe negative impact on people's lives, communities, and healthcare systems. Another rising cause of death for HIV-positive individuals is viral hepatitis. The five hepatitis viruses—A, B, C, D, and E—have distinct routes of transmission, impact distinct groups, and produce disparate health effects. In addition to providing customized interventions for each virus, an effective response necessitates a variety of standard measures for prevention, diagnosis, treatment, surveillance, and screening. Hepatitis acute A timely diagnosis is necessary for an infection, and therapy is frequently supportive. Usually, acute hepatitis B and C goes untreated until it develops into a chronic illness [8-13]. As a result, there has always been a lot of research being done in this area due to the high incidence of viral hepatitis and its grave effects, and new and progressively better therapies have been developed. The objective of this study is to provide an overview of the available data about the clinical management of viral hepatitis. Future therapy options and other research areas are also described. Hepatitis acute A timely diagnosis is necessary for an infection, and therapy is frequently supportive. Usually, acute hepatitis B and C goes untreated until it develops into a chronic illness. Pregnant individuals are particularly susceptible to acute hepatitis E, which can result in a high death rate. Because HBV and HCV infections produce chronic, lifelong infections that cause permanent liver damage that results in cirrhosis and, in certain circumstances, HCC, they account for the majority of hepatitis-associated morbidity (96%) and mortality (91%) worldwide. Although there are still some small issues, hepatitis C treatment represents the greatest advancement in viral hepatitis in recent decades [14-20]. On the other hand, despite recent progress in our understanding of HBV, there are still major challenges because of its integration with the host DNA. The first hepatitis D drug approved in the EU is encouraging. Scientific developments in HBV virology and immunology are crucial for achieving a functional cure for CHB patients in the upcoming ten years. All things considered, significantly more funding and new developments are required to make these treatments broadly accessible if the hepatitis elimination goals are to be met by 2030. A national elimination plan and adequate funding are required to enable region-specific solutions that take into account local epidemiology and disease load [21-25].

The main purpose of the presented manuscript is a brief analysis of the relevance of improving diagnostic and therapeutic measures for viral hepatitis based on the results of reputable scientific research, their importance in medical practice, as well as side effects and disadvantages associated with their use.

The hepatitis A virus (HAV), a ribonucleic acid (RNA) picornavirus, is the cause of hepatitis A. One of the main causes of acute viral hepatitis is the oral-faecal transmission of the virus. There is no development to chronic hepatitis, and clinical symptoms vary from asymptomatic infection to acute liver failure (ALF), which occurs in less than 1% of cases [8]. Hepatitis A is thought to cause 1.4 million infections worldwide each year, and 27731 deaths were reported in 2010. Person-to-person contact and contaminated food or water are the main risk factors for transmission of this disease, which can occur occasionally or in an epidemic. The human immunological reaction to the HAV causes hepatic damage. Hepatocyte cytoplasm is where viruses replicate, and human leukocyte antigen-restricted HAV-specific CD8+ T lymphocytes and natural killer cells kill infected cells to produce hepatocellular damage. Severe hepatitis is linked to an increased host response and a significant decrease in circulating HAV RNA during acute infection. Since over 70% of infected individuals experience symptoms, the onset of symptomatic hepatitis is typically correlated with patient age [1-4]. Eighty-five percent of patients show full clinical and biochemical recovery within two to three months, and almost all patients show complete recovery by six months. Serum immunoglobulin M antibody to HAV, which is detectable for three to six months, is used to make the diagnosis. Serum immunoglobulin G antibodies are linked to lifetime protective immunity, show up early in the convalescent stage of the illness, and can be detected for decades. Since there are currently no particular medications to treat HAV infection, supportive care is the mainstay of treatment. Vaccination, immune globulin, and attention to hygienic practices—hand washing, avoiding tap water and raw food consumption in unsanitary regions, and properly heating food—are all part of preventing HAV infection. In conclusion, children between the ages of 2 and 18 who have never received the hepatitis A vaccine, anyone over the age of one who has contracted the HIV virus, and certain risk groups (such as those with chronic liver disease, travelers, men who have sex with men, etc.) are all eligible for vaccination. Additionally, vaccination plans may differ depending on each nation's local public health regulations [7-13].

HBV infection is still a leading cause of chronic liver disease globally, despite the existence of an effective

preventive hepatitis B vaccine for more than 30 years. HBV belongs to the Hepadnaviridae family of tiny deoxyribonucleic acid (DNA) viruses. Hepatocytes are infected by HBV, which begins its replication cycle through an RNA intermediate (by reverse transcription) and can integrate into the host genome, allowing it to remain in the hepatocyte nucleus. A nucleocapsid with a partially double-stranded, relaxed circular DNA genome (rcDNA) is part of the viral envelope. The nucleocapsid is carried to the nucleus in the cytoplasm of infected hepatocytes, where host factors release the rcDNA and transform it into covalently closed circular DNA (cccDNA), creating a stable minichromosome [7-11]. The evolution of chronic hepatitis B is a dynamic infectious disease that is heavily influenced by the interaction between the virus and the host immune system. Inactive carriers make up more than two-thirds of people with chronic hepatitis B. Due to inadequate innate immunity and HBV-specific immune response activation, they exhibit low viral replication rates and little to no liver necroinflammation. Setting treatment objectives for HBV is crucial. A reduction in serum HBV DNA to undetectable levels by assays with a lower limit of detection of 10–20 IU/mL is referred to be a virological response during nucleos(t)ide analogue (NA) therapy. If treatment with interferon (IFN) alpha is administered. The most promising methods to remove HBV without destroying the infected hepatocytes are immunomodulatory medicines and gene silencing technologies. New medications that target HBV are needed. Beyond viral suppression, the development of curative treatments for hepatitis C has rekindled interest in curing hepatitis B. Many medications are now being researched to help treat HBV infection. Increasing the number of people who receive the hepatitis B immunization must also be a top priority [23-27].

Three scientists—Harvey Alter, Michael Houghton, and Charles Rice—were given the 2020 Nobel Prize in Physiology or Medicine for their work identifying HCV. Millions of lives were saved by the incredible discovery of HCV. It made it possible to create extremely sensitive blood tests for diagnosis and to quickly increase the number of antiviral medications that target hepatitis C. Due to inadequate screening programs, approximately half of the 71 million people who live with HCV worldwide are now unaware of their condition. A hepatotropic and lymphotropic virus with a high probability of chronicity causes hepatitis C infection, a silent systemic illness. Increased levels of pro-inflammatory cytokines and chemokines are indicative of both direct and indirect viral activities that cause persistent systemic inflammation. As a well-known risk factor for insulin resistance, chronic systemic

inflammation raises the risk of cardiovascular events and type 2 diabetes mellitus [11-16]. Additionally, special attention must be given during the post-RVS phase: (1) surveillance for both HCC and hepatic decompensation every six months is still necessary in patients with advanced fibrosis, particularly in those with comorbidities that increase the risk of fibrosis progression, such as obesity, diabetes mellitus, and alcohol abuse; (2) close monitoring of extrahepatic complications, such as cardiovascular diseases, diabetes, lymphoma, and cryoglobulinemia; (3) yearly screening for HCV reinfection, primarily for high-rises, such as drug injectors and inmissions. The impact of eradicating a chronic infection on the immune system was examined in recent investigations. Significant immune system alterations are known to result with persistent HCV infection, and these alterations do not seem to be completely reversible following virus eradication. The successful eradication of HCV is anticipated as a result of numerous nations' efforts to conduct comprehensive testing for the virus and the availability of oral medications that are affordable and have few adverse effects. There are still hopes for a prophylactic HCV vaccine in the future [18-25].

Rapid and substantial progress has been made in the past ten years in the diagnosis, treatment, and management of viral hepatitis. These developments include the discovery of antiviral treatments with low rates of viral resistance, the development of DAAs for the treatment of chronic hepatitis caused by HCV with SVR rates greater than 95%, and the improvement of HBV vaccination and enhancement of the immunogenicity of HBV vaccines. With the amazing development of hepatitis C curative medicines over the past ten years, the treatment of viral hepatitis has swiftly changed. Significant progress has also been made in this area with the creation and enhancement of the HAV and HEV vaccines. Despite these developments, there are currently no medications that can treat hepatitis B in addition to suppressing the virus. Future treatments for HBV are encouraged by targeted antiviral medications, and the most promising methods for eliminating the virus include immunomodulatory medicines and gene silencing technology. Targeted antiviral drugs against HDV are being developed as a result of the rise in HDV cases; these drugs are presently being studied in clinical settings [4-10]. To boost the immune system and combat HBV, immunomodulators have been studied. Among the treatments being researched are drugs that boost both innate and adaptive immune systems, transfer HBV-specific modified CD8+ T cells, and prevent CD8+ T cell depletion by checkpoint inhibition [36]. Although further research is required,

immunomodulators may offer a treatment for hepatitis B infection in the future. Although the invention and improvement of vaccines enhanced its prevention, there are still no recommended treatments for acute hepatitis A and E, which are often self-limiting or asymptomatic. Consistent indications for HAV immunization have been established, and a vaccine to prevent HEV is presently available. Problems with viral hepatitis screening, diagnosis, referral, and treatment continue despite these developments. The necessity to create suitable public policies for patient referral is reinforced by reports of treatment access issues in the published literature. Further research should be done to identify patients who have liver fibrosis and an acceptable viral response, as well as those who are resistant to the new treatment regimens and may require constant monitoring [13-21].

DISCUSSION

The most significant research subjects that address problems that are now being solved, those that are still unsolved, and potential future research directions are the focus of this review. We will cover epidemiology, molecular surveillance, novel susceptible populations, and dietary and environmental detections for the hepatitis A virus; host variables associated with the disease, diagnosis, treatment, and vaccination for the hepatitis B virus. Hepatitis A, B, C, D, and E viruses can cause viral hepatitis, which is a serious public health concern and a major cause of morbidity and mortality. Hepatitis B virus, hepatitis delta virus, and hepatitis C virus continue to be the principal causes of cirrhosis, hepatocellular cancer, chronic viral hepatitis, and liver-related death. This narrative review by the ESCMID Study Group for Viral Hepatitis (ESGVH) highlights current developments and professional viewpoints in the subject. Emerging biomarkers for HBV, such as quantified HBs antigen, HBV RNA, and hepatitis B core-related antigen, present chances to improve surveillance and customize treatment [3-11]. While HDV epidemiology is changing and being explored more, bulevirtide's approval marks a significant therapeutic advancement, and additional HDV medicines are in the works. Direct-acting antivirals enable curative therapy for HCV and have made elimination a feasible goal. However, there are still gaps in diagnosis, connection to care, and fair access that present potential to expedite progress. For the hepatitis C virus, we will focus on pathogenesis, immunological response, direct action antiviral treatment in the context of solid organ transplantation, issues related to the development of hepatocellular carcinoma, direct action antiviral resistance due to selection of resistance-associated variants, and vaccination; for the hepatitis E virus, we will address

epidemiology (including new emerging species), diagnosis, clinical aspects, treatment, vaccine development, and environmental surveillance. In order to better understand the diverse HAV, HBV, HCV, HDV, and HEV scenarios and impacts globally, further epidemiological, clinical, and virological research is required [14-21]. The aforementioned highlights fresh challenges related to hepatitis E globally. However, the majority of patients lack a diagnosis, and access to therapy is restricted, making the goal difficult to achieve. The five viruses differ significantly in terms of epidemiology, risk for chronicity, risk for liver consequences, and therapies. All five viruses can cause acute infection, but HBV, HCV, and HDV are the most common causes of chronic illness. This review offers an overview of recent developments in the diagnosis and treatment of viral hepatitis, with particular attention to rapid diagnostic techniques, newly developed treatments that are presently undergoing clinical trial testing, the creation of vaccines to treat chronic hepatitis B (CHB), and the use of vaccines to prevent HEV in certain regions of the world [22-27].

CONCLUSIONS

Significant progress has been made in the last ten years in our comprehension and treatment of HBV, HDV, and HCV. Quantitative HBsAg, HBV RNA, and HBcrAg are examples of novel biomarkers that have the potential to improve HBV monitoring and direct customized treatment plans. The therapeutic landscape for HDV, a long-neglected illness, has changed with the approval of bulevirtide, and other medicines that target different viral and host pathways are currently being developed. Elimination of HCV is now a feasible goal thanks to the development of highly effective direct-acting antivirals. Finding and filling gaps in diagnosis, treatment access, and linkage to care presents opportunities to speed up progress and remove obstacles, especially in settings with limited resources and among vulnerable groups like injecting drug users. Coordinated international action that combines scientific innovation with a strong political commitment and the improvement of the health system will be necessary for sustained progress. Incorporating decentralized care models, harm reduction tactics, and point-of-care testing can help overcome equity gaps and guarantee that advancements have practical effects. This study highlights both the accomplishments and the unresolved issues in the field of viral hepatitis by compiling the most recent data and professional opinions. The goal of eliminating hepatitis will require ongoing cooperation between medical professionals, researchers, public health officials, and patient groups. Lastly, the primary objectives to eradicate viral

hepatitis and lessen the public health burden of these illnesses are optimal screening by thorough testing along with widespread vaccine and treatment coverage.

REFERENCES

1. Almeida PH, Matiolo CEL, Curvelo LA, Rocco RA, Felga G, Della Guardia B, Boteon YL. Update on the management and treatment of viral hepatitis. *World J Gastroenterol.* 2021 Jun 21;27(23):3249-3261. doi: 10.3748/wjg.v27.i23.3249.
2. Aripov A. N, Akhunzhanova L. L, Nabiev A. U, Aripov O. A, Khamroev T. T. Evaluation of Antifibrotic Activity of a Combination of a New Phytocomposition and Proanthocyanidins in Rats. *Biomed Pharmacol J* 2024;17(4).
3. Ringelhan M, McKeating JA, Protzer U. Viral hepatitis and liver cancer. *Philos Trans R Soc Lond B Biol Sci.* 2017;372:20160274. doi: 10.1098/rstb.2016.0274.
4. Santopaolet F, Lenci I, Milana M, Manzia TM, Baiocchi L. Liver transplantation for hepatocellular carcinoma: Where do we stand? *World J Gastroenterol.* 2019;25:2591-2602. doi: 10.3748/wjg.v25.i21.2591.
5. World Health Organization. WHO estimates of the prevalence and incidence of hepatitis C virus infection by WHO region, 2015. In: Global hepatitis report 2017 [cited 16 March 2021]. Available from: <https://www.who.int/hepatitis/publications/global-hepatitis-report2017/en/> [Ref list]
6. Aripov A. N, Akhunzhanova L. L, Nabiev A. U, Aripov O. A, Khamroev T. T.. Antifibrotic Efficacy of a New Phytocomposition of Essential Phospholipids with Glycyrrhizic Acid, Ecdysterone, Lycopene and Proanthocyanidin in Experimental Severe Chronic Hepatitis Compared with Phosphogliv. *Biomed Pharmacol J* 2023;16(3).Pages : 1815-1825. DOI : <https://dx.doi.org/10.13005/bpj/2761>
7. World Health Organization. Combating Hepatitis B and C to Reach Elimination by 2030: Advocacy Brief. WHO 2016 [cited 16 March 2021]. Available from: WHO_HIV_2016.04_eng.pdf.
8. Aripov A.N., Aripov O.A., Akhunjanova L.L., Nabiev A.O., Nabieva D.A., & Khamroev T.T. (2022). Study the antifibrous efficacy of plant proanthocyanidin in rats with chronic heliotrine liver damage. *Frontline Medical Sciences and Pharmaceutical Journal*, 2(05), 16–25. <https://doi.org/10.37547/medical-fmuspj-02-05-03>.
9. Săndulescu O, Matičić M, Garcia F, Blomé MA, Mondelli MU, Irving W, Zidovec-Lepej S, Widell A, Şahin GÖ. Evolving Insights into Viral Hepatitis: Advances, Evidence, and Expert Perspectives from the ESCMID Study Group for Viral Hepatitis (ESGVH)—Part 2: *Germs.* 2025; 15(3):263-273. <https://doi.org/10.18683/germs.2025.1473>
10. Aripov A.N., Aripov O.A., Akhundjanova L.L., Nabiev A. U., Nişanbaev C.3., Nabieva D.A., Khamroev T.T. Тажриба шароитида сафорофлавонолозиднинг гепатотроп фоаллигини ўрганиш. *Oriental Journal of Medicine and Pharmacology*, 2(02), 55–64. <https://doi.org/10.37547/supsci-ojmp-02-02-07>
11. Hakansson, A.; Alanko Blome, M.; Isendahl, P.; Landgren, M.; Malmqvist, U.; Troberg, K. Distribution of intranasal naloxone to potential opioid overdose bystanders in Sweden: Effects on overdose mortality in a full regionwide study. *BMJ Open.* 2024, 14, e074152.
12. Blome, M.A.; Braback, M.; Alsterberg, S.; Jerkeman, A. Hepatitis C treatment at a Swedish needle exchange program, a successful model of care—The ACTIONNE study. *Int. J. Drug Policy.* 2021, 96, 103407.
13. Aripov A.N, Akhunjanova L.L, Khamroev T.T, Aripov Abdumalik Nigmatovich, Akhunjanova Lola Lazizovna, & Khamroev Tolmas Tolibovich. (2022). Differential Analysis of Chronic Toxic Hepatitis Caused by The Introduction of Heliotrin Solution in Various Ways. *Texas Journal of Medical Science*, 4, 58–62. Retrieved from <https://zienjournals.com/index.php/tjms/article/view/670>
14. Conway, A.; Valerio, H.; Alavi, M.; et al. A Testing campaign intervention consisting of peer-facilitated engagement, point-of-care HCV RNA testing, and linkage to nursing support to enhance hepatitis C treatment uptake among people who inject drugs: The ETHOS Engage Study. *Viruses* 2022, 14. Not, A.;
15. Saludes, V.; Galvez, M.; et al. Usefulness of dried blood spot samples for monitoring hepatitis C treatment outcome and reinfection among people who inject drugs in a test-and-treat program. *J. Med. Virol.* 2023, 95, e28544.
16. Aripov A.N., Aripov O.A., Akhundjanova L.L., Nabiev A.U., Nabieva D.A., & Khamroev T.T. (2022). Study the effect of yantacin on some indicators of cellular renewal and on the level of protein expression on rat hepatocytes in chronic heliotrine liver damage. *International Journal of Medical Sciences And Clinical Research*, 2(05), 06–13. <https://doi.org/10.37547/ijmscr/Volume02Issue0>

5-02.

18. Ivanova Reipold, E.; Shilton, S.; Donolato, M.; Fernandez Suarez, M. Molecular point-of-care testing for hepatitis C: Available technologies, pipeline, and promising future directions. *J Infect Dis.* 2024, 229, S342–S349.

19. Арипов А.Н., Арипов О.А., Ахунджанова Л.Л., Набиев А.Ў., Нишанбаев С.З., Набиева Д.А., Ахмедова Д.И., Ҳамроев Т.Т. Сафорофлавонозиднинг сурункали токсик гепатит фонида жигарнинг асосий функцияларига таъсирини ўрганиш. *Mutafakkir илмий журнал* 2022 й, № 2, 37 – 43.

20. Thomadakis, C.; Gountas, I.; Duffell, E.; et al. Prevalence of chronic HCV infection in EU/EEA countries in 2019 using multiparameter evidence synthesis. *Lancet Reg Health Eur.* 2024, 36, 100792.

21. Martinello, M.; Solomon, S.S.; Terrault, N.A.; Dore, G.J. *Hepatitis C.* *Lancet* 2023, 402, 1085–1096.

22. Aripov A. N., Aripov O. A., Akhunjanova L. L., Nabiev A. O., Karimov Sh. B., Muhammadjonov B. B., & Khamroev T. T. (2022). Achievements and prospects in the diagnosis and treatment of hepatitis, current problems of viral etiology of hepatitis in children. *American Journal of Interdisciplinary Research and Development*, 7, 117–124. Retrieved from <https://ajird.journalspark.org/index.php/ajird/article/view/212>

23. Yuen, M.F.; Lim, S.G.; Plesniak, R.; et al. Efficacy and safety of bepirovirsen in chronic hepatitis B infection. *N. Engl. J. Med.* 2022, 387, 1957–1968.

24. Besombes, C.; Njouom, R.; Paireau, J.; et al. The epidemiology of hepatitis delta virus infection in Cameroon. *Gut* 2020, 69, 1294–1300.

25. Fayzullaeva, Z., Agzamova , A. ., & Bekjanova , J. (2025). Viral hepatitis, the relevance of improving their diagnostic methods and promising preventive measures. *Евразийский журнал медицинских и естественных наук*, 5(5), 44–52. извлечено от <https://in-academy.uz/index.php/EJMNS/article/view/51138>

26. Pisano MB, Giadans CG, Flichman DM, Ré VE, Preciado MV, Valva P. Viral hepatitis update: Progress and perspectives. *World J Gastroenterol.* 2021 Jul 14;27(26):4018-4044. doi: 10.3748/wjg.v27.i26.4018.

27. A.N. Aripov, O.A. Aripov, L.L. Akhunjanova, A.O'. Nabiev, B.B. Muhammadjonov, Karimov Sh.B., & Khamroev T.T. (2022). Problems and relevance of early diagnosis and treatment of severe hereditary and acquired diseases in children. *Frontline Medical Sciences and Pharmaceutical Journal*, 2(07), 6–15. <https://doi.org/10.37547/medical-fmfpj-02-07-02>