IMPACT OF SPECTRAL CHARACTERISTICS OF HYPERSINGULAR OPERATORS ON SOLUTIONS OF PERIDYNAMICS PROBLEMS

Authors

  • Kosimova Marjona Shakirjon qizi 2st year master’s student in mathematics (in areas) of the faculty of Mathematics of the National University of Uzbekistan

DOI:

https://doi.org/10.37547/ijmef/Volume04Issue08-07

Keywords:

Hypersingular operators, peridynamics, spectral characteristics

Abstract

Hypersingular operators play a key role in the mathematical modeling of non-local interactions, particularly in the field of peridynamics, where they provide a powerful tool for understanding material behavior under stress. This paper investigates the spectral characteristics of hypersingular operators and their impact on the solutions of peridynamic equations. Special attention is given to the spectral decomposition of these operators to gain insights into their stability, convergence, and computational efficiency in solving complex problems related to fracture mechanics and material deformation.

References

Silling, S. A. (2000). "Reformulation of elasticity theory for discontinuities and long-range forces." Journal of the Mechanics and Physics of Solids, 48(1), 175-209.

Bobaru, F., Yang, M., Alves, L. F., & Foster, J. T. (2016). Handbook of Peridynamic Modeling. CRC Press.

Alimov, Sh. A. (1994). "Spectral Theory and its Applications." Izvestiya RAN. Seriya Matematicheskaya, 58(6), 1-22.

Ross, B., & Miller, K. S. (1993). "Fractional Calculus and Operator Theory." Acta Applicandae Mathematicae, 35(1-2), 1-27.

Cottrell, J. A., Hughes, T. J. R., & Bazilevs, Y. (2009). Isogeometric Analysis: Toward Integration of CAD and FEA. Wiley.

Bobaru, F., Hu, W., & Silling, S. A. (2010). "Peridynamic fracture and damage modeling." Journal of Physics: Conference Series, 319(1), 012015.

Du, Q., Gunzburger, M., & Lehoucq, R. B. (2012). "A nonlocal vector calculus, nonlocal volume-constrained problems, and nonlocal balance laws." Mathematical Models and Methods in Applied Sciences, 23(03), 493-540.

Madenci, E., & Oterkus, E. (2014). Peridynamic Theory and Its Applications. Springer.

Tian, X., & Bobaru, F. (2014). "Peridynamic modeling of brittle fracture in concrete." International Journal of Fracture, 190(1), 57-78.

Hughes, T. J. R., Feijóo, G. R., Mazzei, L., & Quincy, J. B. (1998). "The variational multiscale method—a paradigm for computational mechanics." Computer Methods in Applied Mechanics and Engineering, 166(1-2), 3-24.

Gunzburger, M., Lehoucq, R. B., & Zhou, Z. (2010). "A nonlocal vector calculus with application to nonlocal boundary value problems." Computational Mechanics, 46, 315-339.

Bobaru, F., & Xu, J. (2012). "Modeling fracture in functionally graded materials with peridynamics." Journal of Mechanics and Physics of Solids, 60(2), 265-288.

Bazilevs, Y., Calo, V. M., Cottrell, J. A., Evans, J. A., Hughes, T. J. R., Lipton, S., & Scott, M. A. (2010). "Isogeometric analysis using T-splines." Computer Methods in Applied Mechanics and Engineering, 199(5-8), 229-263.

Oterkus, E., & Madenci, E. (2012). "Peridynamic theory for fatigue damage prediction." Journal of Peridynamics and Nonlocal Modeling, 1(1), 14-34.

Hu, W., & Bobaru, F. (2010). "Peridynamics for multiscale fracture and damage." Journal of Computational Physics, 229(18), 6413-6432.

Downloads

Published

2024-08-31

How to Cite

Kosimova Marjona Shakirjon qizi. (2024). IMPACT OF SPECTRAL CHARACTERISTICS OF HYPERSINGULAR OPERATORS ON SOLUTIONS OF PERIDYNAMICS PROBLEMS. International Journal Of Management And Economics Fundamental, 4(08), 76–82. https://doi.org/10.37547/ijmef/Volume04Issue08-07