Articles | Open Access | https://doi.org/10.37547/ajast/Volume05Issue10-38

Numerical Modeling Of Reaction–Diffusion Processes Described By Doubly Nonlinear Parabolic Equations With A Source Term

Djabbarov Oybek Raxmonovich , Doctor of philosophy in Physical and Mathematical Sciences, Associate Professor at Karshi State University, Uzbekistan
Boymurodova Diyora , 2nd-year master’s student at Karshi State University, Uzbekistan

Abstract

In this paper, reaction-diffusion processes described by nonlinear parabolic equations with a source term are modeled. Using a self-similar (automodel) approach, the differential equation is simplified, and an initial approximation is constructed to obtain a numerical solution. During the computation, an appropriate difference scheme is selected, and the stability and convergence properties are analyzed. The results obtained through computer simulations are presented graphically and evaluated in terms of how well they reflect the dynamics of the physical processes. The proposed approach is shown to be effective for obtaining numerical solutions to such models.

Keywords

Doubly nonlinear parabolic equations, reaction–diffusion processes, numerical modeling

References

Aripov M. Khaydarov A., Sadullaeva Sh.A. Numerical modeling of some processes in a nonlinear moving media // «Илм сарчашмалари», №1, 2007, стр. 20-26.

Aripov M., Rakhmonov Z.R. Asymptotic behavior of self-similar solutions of a nonlinear problem polytrophic filtration with a nonlinear boundary condition // Jour. Comp. Tech., 2013, v.18, 4, 50-55.

Aripov M., Sadullaeva Sh. A. Properties of the solutions of one parabolic equation of non-divergent type // Proceedings of CAIM 2003. vol. 2, 130-136.

Aripov M., Sadullaeva Sh. A. To properties of the solutions of one parabolic equationof not divergent type // Calculation Technology 2003. Part IV, 72-78

Aripov M., Sadullaeva Sh.A. To solutions of the one non-divergent type parabolic equation with double non-linearity // Progress in analysis and its applications 2010, 592-596.

Aripov M.M., Djabborov O.R., Avloqulova S.S. Asymptotic solution of the double nonlinear parabolic equation with damping term in Secondary critical case// “Matematika va amaliy matematikaning zamonaviy muammolari ” nomli konferensiya,2020,225-226

Barenblatt G.I., Vazquez J.L. A new free boundary problem for unsteady flows in porous media // Euro Journal Applied Mathematics, 1998, vol. 9, 37-54.

Bellman R. Dynamic programming.—Princeton, NJ: Princeton Univ. Press, 1957

Daniela Giachetti., M. Michaela Porzio Global existence for nonlinear parabolic equations with a damping term . Article in Communications on Pure and Applied Analysis 8(3):923-953 May 2009

Evans L. C. Partial differential equations/ Grad. Stud. Math.—Providence, Rhode Island: Amer. Math. Soc., 1998.

Galaktionov V.A., Levine H.A. On critical Fujita exponents for heat equations with nonlinear flux boundary condition on the boundary // Israel J. Math. 94, 1996, 125-146.

Galaktionov V.A., Vazquez J.L. The problem of blow-up in nonlinear parabolic equations // Discrete and continuous dynamical systems, vol. 8, 2002, pp. 399-433.

Hopf E. Generalized solutions of nonlinear equations of first order// J. Math. Mech.—1965.—14 .—С. 951–972.

Hashui Zhan The Self-Similar Solutions of a Diffusion Equation WSEAS Transaction on Mathematics, 2012 Issue 4, Vol. 12 , 345-356

Lihua Deng., Xianguang Shang Doubly Degenerate Parabolic Equation with TimeDependent Gradient Source and Initial Data Measures, Journal of Function Spaces 2020, Volume 2020, Article ID 1864087, 11 pages, https://doi.org/10.1155/2020/1864087

Mirsaid Aripov, Oybek Djabbarov, Shaxlo Sadullaeva Mathematic Modeling of Processes Describing by Double Nonlinear Parabolic Equation with Convective Transfer and Damping. AIP conference Proceedings, CMT 2020 pp. 640-647

Zhang Q., P. Shi Global solutions and self-similar solutions of semi linear parabolic equations with nonlinear gradient terms, Nonlinear Anal. T.M.A., 72, 2010, pp. 2744-2752

Vázquez J. L. The porous medium equation. Mathematical theory. Monograph, Oxford University Press, Oxford, 2007, 430 p

Арипов М. Методы эталонных уравнений для решения нелинейных краевых задач. Ташкент. Фан. 1988. стр. 137.

Арипов М., Садуллаева Ш. Эффекты конечной скорости распространения возмущения для кросс диффузии // Доклады академии наук Республики Узбекистан, 2016, №4, 12-14.

Article Statistics

Copyright License

Download Citations

How to Cite

Djabbarov Oybek Raxmonovich, & Boymurodova Diyora. (2025). Numerical Modeling Of Reaction–Diffusion Processes Described By Doubly Nonlinear Parabolic Equations With A Source Term. American Journal of Applied Science and Technology, 5(10), 218–224. https://doi.org/10.37547/ajast/Volume05Issue10-38