Articles
| Open Access |
https://doi.org/10.37547/ajast/Volume05Issue10-10
Amination Reactions Analysis For Selecting Optimal Methods In Synthesizing New Urea Derivatives
Abstract
This study delves into the amination processes involved in the synthesis of urea derivatives, focusing on the transformation of carbonyl intermediates and direct carbonylation methods while maintaining the integrity of the urea scaffold. It examines reaction mechanisms, combines empirical data with theoretical insights, and traces the progression from traditional phosgene-dependent techniques, such as COCl₂/amine reactions, to contemporary sustainable innovations like manganese-catalyzed dehydrogenative coupling and CO₂-amine condensations. Traditional approaches deliver 80-95% yields but suffer from toxicity and waste issues, whereas modern methods attain up to 98% selectivity under mild conditions with lower ecological footprints. Key challenges, including reagent toxicity and reaction pressures, are mitigated through flow reactors or recyclable catalysts. The research offers actionable guidance for choosing superior synthesis routes, prioritizing yield, selectivity, environmental compatibility, and by-product reduction, advocating for the synergy of CO₂ utilization and dehydrogenative methods in efficient, green organic synthesis.
Keywords
Urea derivatives, amination, nucleophilic addition
References
Bunnett, J. F. (1962). Investigation of Aromatic Nucleophilic Substitution Reactions. Chemical Reviews, 62(5), 413–433.
Karimov, J. S. (2021). Proizvodnye tiomocheviny s gidroksibenzoynymi kislotami. Universum: khimiya i biologiya, (8(86)). URL: https://cyberleninka.ru/article/n/proizvodnye-tiomocheviny-s-gidroksibenzoynymi-kislotami.
Kong, X. et al. (2010). Synthesis of urea derivatives from amines and CO₂ in the absence of catalyst and solvent. Green Chemistry, 12(11), 1967-1970.
Gehrtz, P. H. et al. (2020). Enantioselective Ring-Closing C–H Amination of Urea Derivatives. Chem, 6(7), 1747-1756.
Karimov, J. S., & Djunaidov, X. H. (2022). Salitsil kislotaning tiomachevina fragmenti saqlagan birikmalari sintezi tahlili. Kimyo va tibbiyotda: nazariyadan amaliyotgacha, 183–184.
Sobirzoda, K. J. (2022). 4-N Dietil Amino Butin-2 Ol-1 sintez reaktsiyasi mexanizmi. Yevropa jurnali noformal ta'limdagi innovatsionlar, 2(3), 61–67.
Smith, J. et al. (2024). Carborane-Catalyzed Aromatic Halogenation: Green Approaches. Current Opinion in Green and Sustainable Chemistry, 45, 100–115.
Karimov, J. S., & Niyazov, L. N. (2021). Gidroksibenzoik kislotolar bilan tiorea hosulalari. Universum: kimyo va biologiya, (8(86)), 61–63.
Karimov, J. S. (2023). Opredelenie toksichnosti (2S)-2-amino-3-(1H-indol-3-il). Scientific Impulse, 1, 9.
Das, S. et al. (2022). Manganese-Catalyzed Dehydrogenative Synthesis of Urea Derivatives and Polyureas. ACS Catalysis, 12(12), 7113-7122.
Zhao, Y. et al. (2020). Hydrosilane-Assisted Synthesis of Urea Derivatives from CO₂ and Amines. The Journal of Organic Chemistry, 85(21), 13955-13962.
Li, Y. et al. (2021). One-pot catalytic synthesis of urea derivatives from alkyl ammonium carbamates using low concentrations of CO₂. Communications Chemistry, 4(1), 1-9.
Ghosh, S. et al. (2024). Urea as an Amine Source to Synthesize Primary Aromatic Amines via Nickel-Mediated C-H Amination. ChemCatChem, 16(5), e202301250.
Master Organic Chemistry (2018). Nucleophilic Addition to Carbonyls: Mechanisms and Examples.
Article Statistics
Copyright License
Copyright (c) 2025 Maxmudov Sulton Obit O’g’li, Karimov Javohir Sobirzoda

This work is licensed under a Creative Commons Attribution 4.0 International License.