Articles
| Open Access |
https://doi.org/10.37547/ajast/Volume05Issue10-07
Clinical Significance Of Biomarkers Of The Angiogenic Process In Patients Who Have Suffered Acute Coronary Syndrome
Abstract
In patients with acute coronary syndrome, a significant increase in the levels of the studied biomarkers was detected: hypoxia-induced factor-1 — 2.1 times, vascular endothelial growth factor (VEGF) — 1.8 times, endothelin-1 — 5.8 times, xanthine oxidase activity — 48%.
The data obtained indicate pronounced endothelial dysfunction and activation of angiogenic processes, which is of important prognostic and clinical significance in the management of patients with ACS.
Keywords
Acute coronary syndrome, Angiogenesis, Hypoxia-inducible factor-1α (HIF-1α), Vascular endothelial growth factor (VEGF-A)
References
Conway EM, Collen D., Carmeliet P. Molecular mechanisms of blood vessel growth. Cardiovasc Res. 2001;49(3):507–521.
Carmeliet P. Angiogenesis in health and disease. Nat Med. 2003;9(6):653–660.
Moreno PR, Purushothaman M., Purushothaman KR. Neovascularization of plaques... Ann NY Acad Sci. 2012;1254:7–17.
Cheng C., Chrifi I., Pasterkamp G., Duckers HJ. Biological mechanisms of microvessel formation... Trends Cardiovasc Med. 2013;23(5):153–164.
Ilen G., et al. Endothelial cell metabolism... Circ Res. 2015;116(7):1231–1244.
Pugh CW, Ratcliffe PJ. Regulation of angiogenesis by hypoxia... Nat Med. 2003;9(6):677–684.
Semenza GL. Hydroxylation of HIF-1... Physiol (Bethesda). 2004;19:176–182.
Wenger RH, Stiehl DP, Camenisch G. Integration of oxygen signaling... Sci STKE. 2005;2005(306):re12.
Hirota K., Semenza GL. Regulation of angiogenesis by HIF-1. Crit Rev Oncol Hematol. 2006;59(1):15–26.
Witt UA, et al. Evolution and classification of hormones... Mol Endocrinol. 2001;15(5):681–694.
Pages G., Pouyssegur J. Transcriptional regulation of the VEGF gene. Cardiovasc Res. 2005;65(3):564–573.
Sours C., et al. Fatty acid carbon is essential for dNTP synthesis... Nature. 2015;520:192–197.
Reinders ME, et al. Proinflammatory functions of VEGF in alloimmunity. J Clin Invest. 2003;112:1655–65.
Perez-Gutierrez L, Ferrara N. The biology of VEGF-A. Nat Rev Mol Cell Biol. 2023;24:816–834.
Shibuya M. The VEGF-VEGFR system as a target... Endocr Metab Immune Disord Drug Targets. 2015;15:135–144.
Grünewald FS., et al. Analysis of VEGF receptor activation... Biochim Biophys Acta. 2010;1804:567–580.
Bourhis M., et al. VEGF-A modulation of T cells. Front Immunol. 2021;12:616837.
Bry M., et al. VEGF-B in physiology and disease. Physiol Rev. 2014;94:779–794.
Rauniyar K., et al. VEGF-C and lymphatic vessel morphogenesis. Front Bioeng Biotechnol. 2018;6:7.
Kimura H., Esumi H. Mutual regulation of NO and VEGF. Acta Biochim Pol. 2003;50:49–59.
Taylor J., Fisher A. Endothelial cells and cardiac energy. Aging (Albany NY). 2019;11:1083–1084.
Talman V, Kivelä R. Cardiomyocyte-endothelial interaction. Front Cardiovasc Med. 2018;5:101.
Hashimoto T., Shibasaki F. HIF as a master switch of angiogenesis. Front Pediatr. 2015;3:33.
Wong BW., et al. Endothelial metabolism and hypoxia. EMBO J. 2017;36:2187–203.
Jain T., et al. HIF as a therapeutic target in atherosclerosis. Pharmacol Ther. 2018;183:22–33.
Duran CL., et al. Molecular regulation of angiogenesis. Compr Physiol. 2017;8:153–235.
Chistyakov DA, et al. The role of lipids and intimal hypoxia in neovascularization. Ann Med. 2017;49:661–77.
Feng S., et al. Mechanical activation of HIF-1α and endothelial dysfunction. Arterioscler Thromb Vasc Biol. 2017;37:2087–2101.
Abe H., Semba H., Takeda N. The role of hypoxia signaling in the pathogenesis of CVD. J Atheroscler Thromb. 2017;24:884–94.
Theodorou K., Boon RA. Endothelial cell metabolism in atherosclerosis. Front Cell Dev Biol. 2018;6:82.
Article Statistics
Copyright License
Copyright (c) 2025 Shukurov I.B.

This work is licensed under a Creative Commons Attribution 4.0 International License.