VOLUME 02 ISSUE 04 Pages: 12-17

SJIF IMPACT FACTOR (2022: 6.108)

OCLC - 1121105677 METADATA IF - 5.582

Publisher: Oscar Publishing Services

Website: https://theusajournals.c om/index.php/ajast

Copyright: Original content from this work may be used under the terms of the creative commons attributes 4.0 licence.

ABOUT COTTON GROWING METHODS

Submission Date: April 18, 2022, Accepted Date: April 25, 2022,

Published Date: April 29, 2022

Crossref doi: https://doi.org/10.37547/ajast/Volume02lssue04-02

Sh.Abdullaev

Senior teacher, Fergana Polytechnic Institute, Fergana, Uzbekistan

Sh. Abdullayev

Tutor, Fergana Polytechnic Institute, Fergana, Uzbekistan

ABSTRACT

The article discusses methods of sowing cotton in horizontal and vertical planes. The most effective method of seeding - square-nesting-is justified and recommendations are given for the wide use of this method. To obtain a square-nesting cotton crop, it is planned to create a new mechanism in the design of the seeder.

KEYWORDS

Cotton, methods of sowing, yield, consumption, row spacing, distance between nests, mechanism.

INTRODUCTION

In the conditions of the Republic of Uzbekistan, cotton is the main agricultural product, so its seeds are sown in many areas. Therefore, the country pays great attention to the quality and productivity of cotton as a necessary raw material [1-4]. His planting methods play an important role in increasing the yield of cotton and reducing its cost. Different sowing methods, on the one hand, affect the yield of cotton,

on the other hand, have a significant impact on the amount of seeds sown, i.e. consumption.

Materials and methods

When we talk about the method of planting cotton, we do not mean just looking at it in one plane. Therefore, the methods of sowing cotton are understood to be the placement of the seed in the horizontal and vertical planes (Figures 1 and 2) [5-9].

VOLUME 02 ISSUE 04 Pages: 12-17

SJIF IMPACT FACTOR (2022: 6.108)

OCLC - 1121105677 METADATA IF - 5.582

Publisher: Oscar Publishing Services

In both planes, cotton planting methods are important. For example, in the vertical sowing method, the planting depth of the seed and the temperature of the soil under sunlight are required, while in the horizontal sowing method, the seed needs to be cared for during the feeding and growth period. It should be noted here that the choice of the method of planting cotton in the horizontal plane is of particular interest, while meeting the agro-technical requirements for cotton in the vertical plane. In this

regard, we choose the most important method of planting cotton in the horizontal plane [10-17].

Cotton seeds are of two types depending on their appearance: hairy and hairless. The technologies of preparation of these seeds for sowing are different, and they are planted in the fields prepared for sowing with special technology in advance in different ways: row, nesting, ribbon nesting, square nesting and dotted (Fig. 1) [18-21].

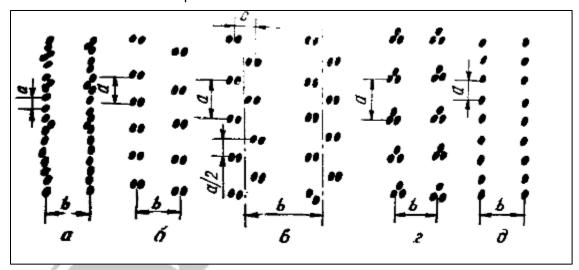


Figure 1. Methods of sowing seeds in the horizontal plane: a - row, b - nesting, c - ribbon nesting, g - square nesting, d - dotted.

Nowadays, it is common to plant hairy seeds in rows and nests. This consumes a large amount of seeds, but although the technology of preparing hairless seeds is difficult, the sowing cost is small, as it is planted in a nest with an sowing machine that accurately removes the number of seeds [22-29]. As can be seen from the figure, in the row planting method, the distance between the nests is almost no a (Fig. 1, a). This means that the feeding area of the seed will not be on the row [28-31]. The larger the feeding radius of each seed or a

pile of 3-5 seeds, the more the seed is saturated with many minerals. In nesting, however, such a feeding radius appears depending on the distance between the nests. Figure 1, b, shows the method of planting a narrow number of nests in a row of cotton. In this case, regardless of whether the distance between the rows is 60 cm or 90 cm, the distance between the cells will be 20 cm, 30 cm, and so on. Even the distance between such nests does not guarantee that the seeds are satisfactorily fed from minerals.

The method of sowing the seeds in Fig. 1, v, with ribbon nesting is rarely used on farms. Especially with the help of mechanization, ie when harvesting with a cotton picking machine, most of the cotton remains in the cotton stalks.

VOLUME 02 ISSUE 04 Pages: 12-17

SJIF IMPACT FACTOR (2022: 6. 108)

OCLC - 1121105677 METADATA IF - 5.582

Publisher: Oscar Publishing Services

As a result, productivity decreases.

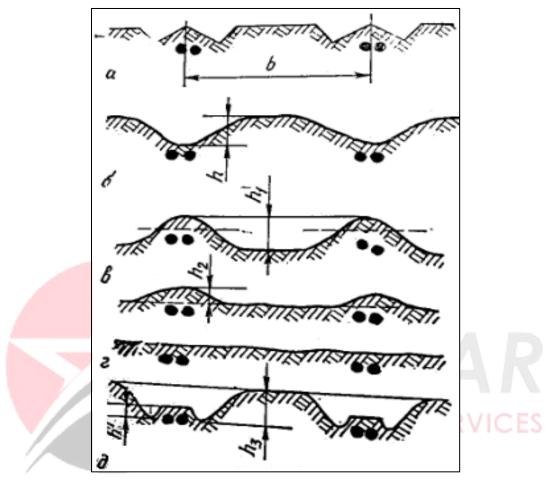


Figure 2. Methods of sowing seeds in the vertical plane, mm:

a – flat field, b – inside the field, v – above the field, g – sprinkling, d – W-shaped field, b – between rows, h=150; h1=160...180; h2=80...100; h3=120...150; h1=20...30..

Figure 1, g shows the method of planting cotton in a square nest. Most of all, the most economical and most productive way to sow seeds is to plant cotton in a square nest. In this case, the feeding range of the seed is the largest compared to other methods. But currently using this method requires additional power and tools.

Figure 1, d, shows the method of dotted sowing of cotton, which is less common than row sowing. The reason is that since the seeds are located one by one, there is a risk that it will not grow. Thus, the analysis of cotton planting methods in the horizontal plane requires the widespread introduction of square nest planting. This indicates the need to invent and use a new, compact modern mechanical device in the design of the drill.

VOLUME 02 ISSUE 04 Pages: 12-17

SJIF IMPACT FACTOR (2022: 6.108)

OCLC - 1121105677 METADATA IF - 5.582

Publisher: Oscar Publishing Services

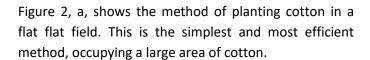


Figure 2, b, shows the method of sowing the seed in the field. This method of planting is used in soils with saline soils, as harmful salts are less at the bottom of the field.

Figure 2, c, shows the method of sowing seeds on ditches previously obtained with another working body.

Figure 2, g shows the method of sowing the seeds, sprinkling the soil to a height of 8 ... 10 cm to form a ridge of ditches. The methods in v and g are used in areas where rainfall is low during spring.

Figure 2, d shows the method of sowing seeds on Wshaped branches. This method is used in areas with strong winds and saline soils.

CONCLUSION

Thus, the methods of planting cotton in the vertical plane are used only depending on the temperature and condition of the air and soil, weather and other characteristics of nature. This is not necessarily due to the methods of planting cotton in the horizontal plane.

At a time when the mechanization of cotton was developing, a great deal of attention was paid to the planting of square nests. This is due to the fact that on the one hand, the consumption of seeds was low, and on the other hand, during the growing season, cotton was cultivated horizontally between rows. In addition, the feeding area of the seed was wide and it would grow well. As a result, it plays an important role in increasing cotton yields. Our goal is to propose a new approach to the method of square nesting of cotton, which is currently receiving little attention, and a compact mechanism in the construction of the seeder.

REFERENCES

- 1. Хамидов, А. Х. (1984). Хлопковые сеялки. Ташкент: Укитувчи.
- 2. Рудаков, Г. М. (1974). Технологические основы механизации сева хлопчатника. Ташкент: Фан, 158-197.
- Набиев, Т. С., & угли Махмудов, И. Р. (2020). 3. Определение давления при прессовании порошковых материалов. Журнал Технических исследований, 3(1).
- 4. Набиев, Т. С., Эркабоев, Х. Ж., & Махмудов, И. Р. (2020). О квадратно-гнездовом способе посева семян хлопчатника. In Фундаментальные и прикладные научные исследования: актуальные вопросы, достижения и инновации (рр. 62-65).
- 5. Sotvoldiev, A. E., Yusupov, S. M., & Maxmudov, I. R. (2019). Research and testing of welding modes for quality formation of the root joint. Scientific-technical journal, 2(4), 138-141.
- Халилов, Ш. З., Гаппаров, К. Г., & угли 6. Махмудов, И. Р. (2020). Влияние травмирования и способов обмолота семян пшеницы на их биологические и урожайные свойства. Журнал Технических исследований, 3(1).
- 7. Davidboev, B., Mirzakhanov, Y., Makhmudov, I., & Davidboeva, N. (2020). Research of lateral assembly of the belt in flat-belt transmissions transport mechanisms. International Journal of Scientific and Technology Research, 9(1), 3666-3669.
- 8. Tojiboyev, B. T. (2020). Euphemism and gender: Linguocultural euphemisms among males and females in uzbek and english language. International of discourse iournal innovation, integration and education, 1(5), 8-11.

VOLUME 02 ISSUE 04 Pages: 12-17

SJIF IMPACT FACTOR (2022: 6.108)

OCLC - 1121105677 METADATA IF - 5.582

Publisher: Oscar Publishing Services

- 9. Qo'chgarov, B. U., Tojiboyev, B. T., & Axtambayev, S. S. (2021). Experimental determination of the gas consumption sent to the device for wet dusting in the humid mode. Экономика и социум, (6-1), 226-229.
- 10. Халилов, Ш. З., Абдуллаев, Ш. А., Халилов, З. Ш., & Умаров, Э. С. (2019). Влияние скорости и угла вбрасывания частицы на характер движения компонентов зерно соломистого вороха. Журнал Технических исследований,
- 11. Халилов, Ш. 3., & Абдуллаев, Ш. А. (2020). Влияние скорости воздушного потока на компонентов характер движения зерносоломистого Проблемы вороха. современной науки и образования, (1 (146)), 13-15.
- 12. Абдуллаев, Ш. А., & Абдуллаева, Д. Т. (2021). Нефт шламини экологик тоза қайта ишлаш ва қайта фойдаланиш технологияси. Scientific progress, 2(6), 910-917.
- 13. Тилавалдиев, Б. Т. (2020). Угол и конус трения. Журнал Технических исследований, 3(2).
- Abdugodirov, N. S. O. G. L., Ogyo'Lov, K. R. O. 14. G., & Jalilova, G. X. Q. (2021). Paxta xomashyosini quritish va tozalash. Scientific progress, 2(1), 857-861.
- Обичаев, И. В. Ў., Абдуқодиров, Н. Ш. Ў., & **15.** Оқйўлов, К. Р. Ў. (2021). Котель ва бошқа оловли технологиялар учун нефт шламларни тоза ёқилғи сифатида қўллаш. Scientific progress, 2(6), 918-925.
- 16. Дусматов, А. Д., Гаппаров, Қ. Ғ., Ахмедов, А. Ў., & Абдуллаев, З. Ж. (2021). Влияния на физико-механические свойство двухслойных цилиндрических оболочек в напряженнодеформированном состоянии. Scientific progress, 2(8), 528-533.

- Дусматов, А. Д., Ахмедов, А. Ў., & Абдуллаев, **17.** (2021). Температурная задача двухслойных цилиндрических оболочек с композиционными защитными слоями. Scientific progress, 2(7), 343-348.
- 18. Dusmatov, A. D. (2019). Investigation of strength and stability of three-layer combined plates used in underground structures. Scientific-technical journal, 22(2), 63-67.
- Касимов, И. И., Дусматов, А. Д., Ахмедов, А. 19. У., & Абдуллаев, З. Д. (2020). Расчет асфальтобетонных дорожных покрытий. Журнал Технических исследований, 3(1).
- 20. Hamzaev, I., Gapparov, K., Umarov, E., & Abdullaev, Z. (2021). Application of the method of finite differences to the calculation of shallow shells. Universum: технические науки, (3-4), 71-76.
- 21. Tojiboyev, B. T., & Mo, A. A. O. G. L. (2021). Liquid composition heat insulating coats and methods for determination of their heat conductivity. Scientific progress, 2(6), 1628-1634.
- 22. Касимов, И. И., Дусматов, А. Д., Хамзаев, И. Х., Ахмедов, А. У., & Абдуллаев, З. Д. (2020). Исследование влияния напряженнодеформированного состояния трехслойных комбинированных пологих оболочек на их физико-механические характеристики. Журнал Технических исследований, 3(2).
- 23. Халилов, Ш. З., Тожибоев, Б. Т., & Кучкаров, Б. У. (2020). Причина скачков при трении. Журнал Технических исследований, 3(1).
- 24. Rasuljon, T., Azizbek, I., & Bobojon, O. (2021). Studying the effect of rotor-filter contact element on cleaning efficiency. Universum: технические науки, (6-5 (87)), 28-32.
- 25. Хамзаев, И. Х., & Умаров, Э. С. (2020). Применение метода конечных разностей к

VOLUME 02 ISSUE 04 Pages: 12-17

SJIF IMPACT FACTOR (2022: 6. 108)

OCLC - 1121105677 METADATA IF - 5.582

Publisher: Oscar Publishing Services

- пологих оболочек. Журнал расчету Технических исследований, 3(1).
- 26. Tojiboyev, B. T. (2021). Development of thermal insulation materials with low thermal conductivity on the basis of local raw materials. Scientific progress, 2(8), 340-346.
- 27. Абдуллаев, 3. Д. (2021). Зависимость интенсивности просеивания частиц сыпучего материала от скорости их перемещения и геометрических параметров. Universum: технические науки, (1-1 (82)).
- 28. Халилов, Ш. З., Тожибоев, Б. Т., Умаров, Э. С., & Кучкоров, Б. У. (2019). Прием и хранение зерновой смеси, поступающей после комбайнов. Журнал Технических исследований, (2).
- 29. Демин, А. В. (2019). Главный редактор: Ахметов Сайранбек Махсутович, д-р техн. наук; Заместитель главного редактора: Ахмеднабиев Расул Магомедович, канд. техн. наук; Члены редакционной коллегии.
- 30. Набиев, Т. С., & Давлетшина, М. С. (2011). Проблемы межкультурной коммуникации школьников в полиэтническом социуме. Международный экспериментального образования, (5), 98-99.
- 31. Абдуллаев, Ш. A. (2021).Усовершенствование прогрессивных вырезных машин с экспериментальным интегрированным дизайном. renaissance: Innovative, educational, natural and social sciences, 1(11), 531-538.