G ?y‘“"-w,]i) Vol.05 Issuell 2025
z L 4 297-304
O0SCAR PUBLISHING

ervices

American Journal of Applied Science
and Technology

Credible, Privacy-Preserving, And Maintainable Machine
Learning Systems: An Integrated Framework Grounded
In Data Quality, Underspecification, And Software
Engineering Principles

Dr. Lucien Moreau

Université de Montréal, Canada

Received:01November2025;Accepted:25November2025; Published:30November2025

Abstract:The accelerating adoption of multi-cloud strategies, platform engineering, and DevOps has
fundamentally altered how contemporary software systems are conceived, governed, and operated. At the
heart of this transformation lies Infrastructure as Code, a paradigm that recasts infrastructure provisioning,
configuration, and lifecycle management into executable, version-controlled, and continuously deployed
software artifacts. While Infrastructure as Code has been widely celebrated for its promise of reproducibility,
speed, and alignment with agile and DevOps practices, its deployment in large-scale, heterogeneous multi-cloud
environments raises deep questions of governance, security, organizational coordination, and developer
experience. Existing scholarship has often treated Infrastructure as Code as a purely technical instrument,
focusing on toolchains, syntax, and automation pipelines. In contrast, this article develops an integrated socio-
technical perspective in which Infrastructure as Code is positioned as both a technological substrate and a
governance mechanism that mediates power, risk, accountability, and organizational learning across the
software development lifecycle.

Drawing on a comprehensive synthesis of contemporary literature on Infrastructure as Code, DevOps,
continuous integration and delivery, internal developer platforms, platform engineering, microservices, and
software lifecycle security, this study constructs a conceptual and interpretive framework for understanding
how Infrastructure as Code operates in multi-cloud enterprises. Central to this framework is the recognition,
articulated by Dasari (2025), that Infrastructure as Code in multi-cloud deployments is not merely about
codifying infrastructure but about institutionalizing best practices that span security, compliance,
interoperability, and operational resilience across organizational and technological boundaries. By situating
Dasari’s analysis within broader debates on developer experience, data-driven lifecycle governance, and GitOps-
based operational models, the article illuminates how Infrastructure as Code becomes a critical site where
strategic intent, operational reality, and human practice converge.

The discussion elaborates how Infrastructure as Code reshapes notions of responsibility, security assurance, and
organizational learning. It critically engages with competing perspectives that either celebrate full automation or
warn against over-reliance on code-driven governance, arguing instead for a balanced model in which
Infrastructure as Code is embedded within internal developer platforms, supported by data-driven feedback
loops, and governed through explicit socio-technical agreements. By integrating insights from platform
engineering, DevOps success factors, and software lifecycle security metrics, the article advances a holistic
understanding of how enterprises can leverage Infrastructure as Code to achieve agility without sacrificing
control. In doing so, it contributes a theoretically grounded and practically relevant account of Infrastructure as
Code as a cornerstone of modern multi-cloud software ecosystems.

Keywords

Infrastructure as Code; Multi-Cloud Governance; Platform Engineering; DevOps; Internal Developer Platforms;

American Journal of Applied Science and Technology (ISSN: 2771-2745)

Software Lifecycle Security

INTRODUCTION:

The last decade of software engineering has been
marked by a profound reconfiguration of how digital
systems are built, deployed, and governed. Traditional
monolithic architectures and manually managed
infrastructure have gradually given way to
microservices, containerized workloads, continuous
delivery pipelines, and cloud-native platforms that
promise unprecedented scalability and flexibility
(Newman, 2021; Fowler, 2014). This transformation
has not been merely technological; it has also
redefined organizational structures, professional roles,
and the epistemic foundations of software
development. DevOps, as both a movement and a set
of practices, has sought to bridge the historical divide
between development and operations, emphasizing
shared responsibility, automation, and rapid feedback
(Jahi¢ and Buzadija, 2023; Leite et al., 2020). Yet as
enterprises have increasingly adopted multi-cloud
strategies to avoid vendor lock-in, enhance resilience,
and comply with diverse regulatory regimes, the
complexity of managing distributed infrastructure has
grown dramatically (Gartner, 2024; RightScale, 2024).

Within this evolving landscape, Infrastructure as Code
has emerged as a central organizing principle. At its
core, Infrastructure as Code refers to the practice of
specifying, provisioning, and managing infrastructure
through machine-readable definition files rather than
through manual configuration or ad hoc scripting
(Morris, 2016). By treating servers, networks, storage,
and even higher-level services as software artifacts,
Infrastructure as Code enables version control,
automated testing, peer review, and reproducible
deployments. These characteristics align closely with
the values of DevOps and continuous delivery,
promising to reduce configuration drift, accelerate
deployment cycles, and improve reliability (Soares et
al., 2022; Ali, 2023). However, as Indika Kumara et al.
(2021) caution, the codification of infrastructure also
introduces new categories of risk, including
misconfiguration at scale, opaque dependencies, and
the potential for security vulnerabilities to propagate
rapidly across environments.

The strategic importance of Infrastructure as Code
becomes even more pronounced in multi-cloud
enterprises, where infrastructure spans multiple
providers, regions, and regulatory contexts. Dasari
(2025) provides one of the most systematic and
contemporary analyses of this challenge, arguing that
best practices for Infrastructure as Code in multi-cloud
deployments must address not only technical

American Journal of Applied Science and Technology

interoperability but also governance, compliance, and
organizational coordination. According to Dasari, the
promise of multi-cloud architectures can only be
realized when Infrastructure as Code is designed to
encapsulate provider-agnostic abstractions, enforce

security and compliance policies, and support
automated auditing across heterogeneous
environments. This perspective reframes

Infrastructure as Code from a narrow automation tool
into a strategic governance mechanism that encodes
organizational intent into executable artifacts.

Despite this growing recognition, much of the existing
literature continues to treat Infrastructure as Code in
isolation from the broader ecosystem of platform
engineering and developer experience. Platform
engineering, as articulated by van de Kamp et al.
(2023) and Srinivasan et al. (2025), emphasizes the
creation of internal platforms that abstract
complexity, provide self-service capabilities, and
enable development teams to focus on business logic
rather than infrastructure plumbing. Internal
developer portals and platforms, as explored by Aslina
and Nugraha (2024) and Aune (2024), serve as socio-
technical interfaces through which developers interact
with these platforms, shaping perceptions of usability,
trust, and autonomy. Yet the relationship between
Infrastructure as Code and these platforms remains
under-theorized. Is Infrastructure as Code merely an
implementation detail of platform engineering, or
does it play a more constitutive role in shaping how
platforms are governed and experienced?

A parallel gap exists in the literature on software
lifecycle security and data-driven governance. Khalid
et al. (2025) and Moriconi (2024) emphasize the need
for systematic metrics and analytics to assess and
improve security across the software development
lifecycle. Continuous integration and delivery
pipelines, while powerful, can also become vectors for
risk if not properly governed (Azad and Hyrynsalmi,
2023; Soares et al., 2022). Infrastructure as Code sits
at a critical junction in these pipelines, as it defines the
very environments in which code is built, tested, and
deployed. Dasari’s (2025) insistence on embedding
security and compliance into Infrastructure as Code
thus resonates strongly with these concerns,
suggesting that infrastructure definitions themselves
become artifacts of risk management and
organizational accountability.

The problem that motivates this article is therefore
not simply how to implement Infrastructure as Code in
a technical sense, but how to conceptualize and

298 https://theusajournals.com/index.php/ajast

American Journal of Applied Science and Technology (ISSN: 2771-2745)

govern it within the complex socio-technical systems
of modern multi-cloud enterprises. Existing studies
offer valuable but fragmented insights: DevOps
research highlights cultural and organizational factors;
platform engineering literature focuses on abstraction
and productivity; security scholarship emphasizes
metrics and controls; and Infrastructure as Code
research often centers on tooling and best practices.
What is lacking is an integrative framework that brings
these strands together to explain how Infrastructure
as Code operates as a linchpin of contemporary
software ecosystems.

This literature gap has both theoretical and practical
consequences. Theoretically, without an integrated
perspective, it is difficult to understand how codified
infrastructure reshapes power relations between
teams, how it mediates trust between developers and
operators, and how it institutionalizes certain values,
such as security or speed, over others. Practically,
enterprises risk adopting Infrastructure as Code in a
superficial manner, focusing on automation while
neglecting governance, developer experience, and
long-term sustainability. As Shropshire and van
Devender (2024) observe, internal developer
platforms and the infrastructures that underpin them
can become sources of systemic risk if not properly
designed and governed.

Against this backdrop, this article advances a
comprehensive analysis of Infrastructure as Code in
the context of platform-engineered, multi-cloud
software lifecycles. By synthesizing the insights of
Dasari (2025) with a broad range of contemporary
scholarship, it seeks to articulate how Infrastructure as
Code can be understood as a socio-technical
governance mechanism rather than merely a technical
convenience. In doing so, it contributes to ongoing
debates about the future of DevOps, the role of
platform engineering, and the pursuit of secure and
sustainable software delivery at scale (Kunchenapalli,
2024; Chandrasekaran, 2024).

The remainder of the article develops this argument
through a detailed methodological synthesis of the
literature, followed by an interpretive analysis of key
themes and tensions. Throughout, particular attention
is paid to how multi-cloud complexity amplifies both
the opportunities and the challenges of Infrastructure
as Code, and how best practices, as articulated by
Dasari (2025), can be situated within a broader
theoretical and organizational context. In this way, the
article aims to provide both a deep scholarly
contribution and a practically relevant guide for
researchers and practitioners navigating the evolving
terrain of cloud-native software engineering.

American Journal of Applied Science and Technology

METHODOLOGY

The methodological foundation of this study is rooted
in qualitative, interpretive research traditions within
information systems and software engineering
scholarship, which emphasize theory building through
systematic engagement with existing literature rather
than through primary data collection alone (Moriconi,
2024; Leite et al., 2021). Given the complexity and
socio-technical nature of Infrastructure as Code in
multi-cloud environments, a purely quantitative or
tool-centric analysis would be insufficient to capture
the breadth of organizational, cultural, and
governance dynamics involved. Instead, this research
adopts an integrative literature synthesis approach
that draws on peer-reviewed journal articles,
conference proceedings, doctoral and master’s theses,
and authoritative monographs to construct a coherent
analytical framework.

The corpus of literature for this study was defined by
the references provided, which collectively span
several interrelated domains: Infrastructure as Code
and cloud-native operations (Morris, 2016; Indika
Kumara et al.,, 2021; Dasari, 2025), DevOps and
continuous integration and delivery (Ali, 2023; Jani,
2023; Soares et al., 2022), platform engineering and
internal developer platforms (Srinivasan et al., 2025;
van de Kamp et al., 2023; Aune, 2024), software
lifecycle security and data-driven governance (Khalid
et al., 2025; Moriconi, 2024), and microservices-based
architectures (Newman, 2021; Fowler, 2014). This
deliberate breadth reflects the premise that
Infrastructure as Code cannot be adequately
understood in isolation from the organizational and
architectural contexts in which it operates.

The analytical procedure involved several iterative
stages. First, each source was examined to identify its
core arguments, conceptual frameworks, and
empirical claims related to automation, governance,
security, and developer experience. Particular
attention was paid to how authors conceptualized the
relationship between code, infrastructure, and
organizational practice. For example, Dasari (2025)
was analyzed not only for its prescriptive best
practices but also for its implicit assumptions about
enterprise governance and risk management.
Similarly, platform engineering studies such as
Srinivasan et al. (2025) and van de Kamp et al. (2023)
were interrogated for how they positioned
infrastructure abstractions within broader productivity
and governance narratives.

Second, these concepts were coded and clustered into

thematic categories, including automation and
reproducibility, security and compliance,
299 https://theusajournals.com/index.php/ajast

American Journal of Applied Science and Technology (ISSN: 2771-2745)

organizational coordination, developer experience,
and multi-cloud complexity. This thematic analysis
allowed for the identification of convergences and
divergences across the literature, revealing, for
instance, how DevOps scholarship’s emphasis on
cultural change intersects with Infrastructure as
Code’s emphasis on codification (Azad and
Hyrynsalmi, 2023; Dasari, 2025). The goal was not to
reduce the literature to a set of discrete variables but
to trace patterns of meaning and debate that inform
how Infrastructure as Code is understood and
practiced.

Third, an interpretive synthesis was conducted in
which these themes were woven into a coherent
narrative about Infrastructure as Code as a socio-
technical governance mechanism. This involved
comparing and contrasting different scholarly
viewpoints, such as the more technology-centric
perspectives found in Morris (2016) and Indika
Kumara et al. (2021) with the more organizationally
oriented analyses of Aune (2024) and Leite et al.
(2021). Throughout this process, Dasari’s (2025)
framework for multi-cloud best practices served as a
central reference point, anchoring the analysis in the
specific challenges of heterogeneous cloud
environments.

The methodological rationale for this approach rests
on the recognition that emerging phenomena like
platform engineering and Infrastructure as Code are
still in the process of theoretical stabilization. As Bayer
(2024) argues in his discussion of metamodeling and
internal platforms, conceptual clarity often lags
behind technological innovation, necessitating
reflective and integrative scholarship. By synthesizing
a diverse body of work, this study aims to contribute
to such conceptual clarification, offering a lens
through which disparate findings can be interpreted as
part of a larger socio-technical system.

Nevertheless, this methodology also has limitations.
Because it relies exclusively on secondary sources, it
cannot capture the full richness of lived organizational
experience or the nuances of specific enterprise
implementations. Empirical case studies or
ethnographic research could reveal tensions and
practices that are not fully articulated in the literature
(Aune, 2024; Shropshire and van Devender, 2024).
Moreover, the rapidly evolving nature of cloud
technologies means that some insights may become
outdated as tools and practices change (Gartner,
2024). Despite these constraints, the interpretive
synthesis remains a powerful method for developing
theory and for situating technical practices like
Infrastructure as Code within broader organizational
and strategic contexts (Moriconi, 2024; Khalid et al.,

American Journal of Applied Science and Technology

2025).

In sum, the methodology of this study is designed to
balance rigor with interpretive depth, grounding its
arguments in a comprehensive and critically engaged
reading of contemporary scholarship. By doing so, it
provides a robust foundation for the subsequent
analysis of results and the theoretical discussion that
follows, all of which remain anchored in the literature
and in the best practices articulated for multi-cloud
Infrastructure as Code by Dasari (2025).

RESULTS

The synthesis of the literature reveals a set of
interrelated findings that illuminate how
Infrastructure as Code operates within platform-
engineered, multi-cloud software lifecycles. These
findings are not statistical outcomes but interpretive
patterns that emerge from the convergence of
multiple scholarly perspectives, reflecting the socio-
technical complexity of the domain (Moriconi, 2024;
Srinivasan et al., 2025). One of the most prominent
results is that Infrastructure as Code functions as a
unifying layer across the software development
lifecycle, linking development, operations, security,
and governance through a shared, codified
representation of infrastructure (Dasari, 2025; Morris,
2016).

Across the
consistently

literature, Infrastructure as Code is
portrayed as a mechanism for

reproducibility and consistency. By expressing
infrastructure in version-controlled code,
organizations can recreate environments reliably

across development, testing, and production, thereby
reducing configuration drift and deployment errors
(Indika Kumara et al., 2021; Soares et al., 2022). This
technical capability, however, also has organizational
implications. It enables what Khalid et al. (2025)
describe as measurable and auditable security
practices, because every change to the infrastructure
becomes traceable and reviewable. In multi-cloud
contexts, this traceability becomes especially valuable,
as heterogeneous provider interfaces and regulatory
requirements can otherwise obscure accountability
(Dasari, 2025).

Another significant finding concerns the relationship
between Infrastructure as Code and platform
engineering. Studies of internal developer platforms
and platform engineering frameworks consistently
emphasize abstraction, self-service, and standardized
workflows as key enablers of developer productivity
(Srinivasan et al., 2025; van de Kamp et al., 2023). The
literature indicates that Infrastructure as Code is not
merely a backend automation tool in these platforms
but a foundational artifact that encodes the platform’s

300 https://theusajournals.com/index.php/ajast

American Journal of Applied Science and Technology (ISSN: 2771-2745)

operational logic. As Aune (2024) observes, when
developers interact with internal platforms, they are
indirectly invoking Infrastructure as Code modules
that provision and configure resources on their behalf.
This arrangement creates a mediated relationship
between developers and infrastructure, in which
platform teams become custodians of codified
operational knowledge.

The results further suggest that this mediation has
profound implications for developer experience and
organizational trust. Chandrasekaran (2024) and
Kunchenapalli (2024) argue that a positive developer
experience depends not only on tool usability but also
on the predictability and transparency of the
underlying platform. Infrastructure as Code
contributes to this predictability by ensuring that
infrastructure behavior is defined explicitly and can be
reviewed, tested, and improved over time (Dasari,
2025; Indika Kumara et al., 2021). At the same time, if
Infrastructure as Code is poorly designed or
insufficiently documented, it can become a source of
frustration and bottleneck, reinforcing perceptions of
centralized control rather than empowerment
(Shropshire and van Devender, 2024; Aune, 2024).

Security and compliance emerge as another major
theme in the results. The literature on software
lifecycle security consistently highlights the need to
shift security “left” into earlier stages of development
and to integrate it into automated pipelines (Khalid et
al., 2025; Azad and Hyrynsalmi, 2023). Infrastructure
as Code plays a critical role in this shift by allowing
security policies, network configurations, and access
controls to be defined and enforced through code
(Dasari, 2025; Ali, 2023). In multi-cloud environments,
where security models and compliance requirements
may differ across providers, codified infrastructure
becomes a means of harmonizing and enforcing
organizational standards (Morris, 2016; Dasari, 2025).
This harmonization is not merely technical; it
represents an organizational commitment to treating

security as a first-class, continuously governed
concern.
The results also reveal tensions and trade-offs

inherent in the codification of infrastructure. While
automation and standardization can enhance
efficiency and reduce human error, they can also
obscure complexity and create brittle systems if not
accompanied by adequate oversight and learning
mechanisms (Indika Kumara et al., 2021; Soares et al.,
2022). Moriconi (2024) emphasizes the importance of
data-driven feedback loops to monitor and adapt
software processes, and the literature suggests that
Infrastructure as Code provides a rich source of such
data, capturing not only what was deployed but how

American Journal of Applied Science and Technology

and why it was changed. Yet without organizational
processes to interpret and act on this data, the mere
existence of codified infrastructure does not
guarantee improved outcomes (Khalid et al., 2025;
Shropshire and van Devender, 2024).

Finally, the multi-cloud dimension amplifies all of
these dynamics. Dasari (2025) underscores that in
multi-cloud deployments, Infrastructure as Code must
balance provider-specific optimizations with the need
for portability and consistency. The literature indicates
that this balance is both technically and
organizationally challenging, requiring platform teams
to make strategic decisions about abstraction layers,
tooling, and governance structures (Srinivasan et al.,
2025; van de Kamp et al., 2023). These decisions, in
turn, shape how developers perceive and use the
platform, how security is enforced, and how resilient

the organization is to change (Aune, 2024;
Kunchenapalli, 2024).
Together, these results paint a picture of

Infrastructure as Code as a central, multifaceted
element of contemporary software ecosystems. It is
simultaneously a technical enabler, a governance
mechanism, and a socio-organizational artifact, whose
effects ripple across the software development
lifecycle and are particularly pronounced in the
complexity of multi-cloud environments (Dasari, 2025;
Moriconi, 2024).

DISCUSSION

The findings of this study invite a deeper theoretical
interpretation of Infrastructure as Code as a socio-
technical phenomenon that transcends its origins as a
tool for automating server provisioning. By situating
Infrastructure as Code within the intertwined domains
of platform engineering, DevOps, and multi-cloud
governance, it becomes possible to understand how
codified infrastructure reshapes organizational power,
responsibility, and knowledge production. This section
therefore engages in a critical dialogue with existing
scholarship, exploring the implications, tensions, and
future trajectories of Infrastructure as Code as
articulated across the literature (Dasari, 2025;
Srinivasan et al., 2025; Moriconi, 2024).

At a theoretical level, Infrastructure as Code can be
understood as a form of institutionalization. When
infrastructure definitions are written in code, stored in
version control, and executed through automated
pipelines, they become part of the organization’s
formal memory, akin to policies or standard operating
procedures (Morris, 2016; Indika Kumara et al., 2021).
Dasari (2025) extends this notion by arguing that in
multi-cloud enterprises, Infrastructure as Code
encodes not only technical configurations but also

301 https://theusajournals.com/index.php/ajast

American Journal of Applied Science and Technology (ISSN: 2771-2745)

compliance requirements, security controls, and
governance rules. In this sense, Infrastructure as Code
acts as what sociotechnical theorists might describe as
a “boundary object,” mediating between different
communities of practice—developers, operators,
security professionals, and auditors—by providing a
shared, interpretable artifact (Aune, 2024; Shropshire
and van Devender, 2024).

This boundary-spanning role has profound
implications for organizational power and
accountability. Traditional IT operations often relied
on tacit knowledge and manual interventions, which
concentrated authority in the hands of experienced
operators. Infrastructure as Code redistributes this
authority by making infrastructure behavior explicit
and reviewable, enabling developers and platform
engineers to participate in decisions that were once
opaque (Leite et al., 2021; Kunchenapalli, 2024). At
the same time, this redistribution can create new
forms of centralization, as platform teams become the
gatekeepers of the code that defines the
infrastructure (Srinivasan et al., 2025; van de Kamp et
al.,, 2023). The tension between empowerment and
control thus becomes a central theme in the
governance of Infrastructure as Code.

From the perspective of DevOps theory, this tension
reflects the ongoing struggle to balance autonomy
with standardization. DevOps advocates have long
argued that high-performing teams require both the
freedom to experiment and the stability provided by
shared practices and tooling (Azad and Hyrynsalmi,
2023; Leite et al., 2020). Infrastructure as Code
embodies this duality: it enables rapid, self-service
provisioning while also enforcing standardized
configurations and policies (Dasari, 2025; Ali, 2023). In
multi-cloud environments, where inconsistency can
quickly lead to security gaps or operational failures,
this standardization becomes particularly valuable,
even as it may constrain local experimentation
(Morris, 2016; Dasari, 2025).

The literature on platform engineering provides a
complementary lens through which to interpret these
dynamics. Internal platforms, as conceptualized by
Srinivasan et al. (2025) and Ciancarini et al. (2025),
aim to reduce cognitive load for developers by
encapsulating infrastructure complexity behind well-
designed interfaces. Infrastructure as Code is the
substrate that makes this encapsulation possible,
translating platform abstractions into concrete
resource allocations and configurations. However, as
Bayer (2024) notes, the success of such platforms
depends on the quality of their underlying
metamodels and abstractions. Poorly designed
Infrastructure as Code can lead to rigid or leaky

American Journal of Applied Science and Technology

abstractions, undermining both developer experience

and operational resilience (Aune, 2024;
Chandrasekaran, 2024).
Security considerations further complicate this

picture. The integration of Infrastructure as Code into
CI/CD pipelines has been widely promoted as a means
of shifting security left and ensuring that
vulnerabilities are detected and remediated early
(Khalid et al., 2025; Jani, 2023). Dasari (2025)
emphasizes that in multi-cloud settings, codified
security controls are essential for maintaining
consistent protection across disparate environments.
Yet the literature also warns against an overly
mechanistic view of security, in which compliance is
reduced to passing automated checks (Azad and
Hyrynsalmi, 2023; Soares et al., 2022). True security,
these authors argue, requires ongoing human
judgment, contextual awareness, and organizational
learning—qualities that cannot be fully captured in
code.

This critique points to a broader limitation of
Infrastructure as Code as a governance mechanism.
While codification enhances transparency and
repeatability, it can also obscure the rationale behind
decisions, particularly when code is reused or
inherited without adequate documentation (Indika
Kumara et al.,, 2021; Shropshire and van Devender,
2024). In multi-cloud enterprises, where teams may
operate across organizational and geographic
boundaries, this opacity can hinder collaboration and
trust. Moriconi’s (2024) call for data-driven
governance highlights the need to complement
Infrastructure as Code with analytics and feedback
systems that help organizations understand not just
what was deployed, but how it affects performance,
security, and user experience.

The discussion also raises questions about the future
evolution of Infrastructure as Code in the context of
emerging practices such as GitOps. Beetz and Harrer
(2022) and Weaveworks (2024) describe GitOps as an
operational model in which Git repositories become
the single source of truth for both application and
infrastructure state. This model aligns closely with the
principles articulated by Dasari (2025), as it reinforces
the idea that codified definitions should drive actual
system behavior. However, GitOps also intensifies the
coupling between code repositories and production
systems, making the governance of Infrastructure as
Code even more critical. Errors or malicious changes in
a repository can have immediate, far-reaching
consequences, particularly in automated multi-cloud
pipelines (Indika Kumara et al., 2021; Khalid et al.,
2025).

302 https://theusajournals.com/index.php/ajast

American Journal of Applied Science and Technology (ISSN: 2771-2745)

Looking forward, the literature suggests several
avenues for future research and practice. One is the
need for richer conceptual models that integrate
Infrastructure as Code with organizational theory,
platform governance, and developer experience
(Bayer, 2024; Aune, 2024). Another is the exploration
of how data-driven techniques, such as those
proposed by Moriconi (2024), can be used to analyze
Infrastructure as Code repositories and pipelines,
identifying patterns of risk, inefficiency, or innovation.
Finally, as multi-cloud strategies continue to evolve,
there is a pressing need for empirical studies that
examine how different governance models and
abstraction strategies affect real-world outcomes
(Dasari, 2025; Srinivasan et al., 2025).

In synthesizing these perspectives, it becomes clear
that Infrastructure as Code is neither a panacea nor a
mere technical detail. It is a powerful but ambivalent
force that can enable agility, security, and
collaboration, while also introducing new forms of
complexity and risk. Understanding and governing this
force requires a holistic, socio-technical perspective
that acknowledges the interplay of code, people, and
institutions in the contemporary software enterprise
(Dasari, 2025; Moriconi, 2024).

CONCLUSION

This article has advanced a comprehensive, literature-
grounded analysis of Infrastructure as Code as a
central organizing principle of platform-engineered,
multi-cloud software lifecycles. By integrating insights
from DevOps, platform engineering, software lifecycle
security, and cloud-native architecture, it has shown
that Infrastructure as Code functions not merely as an
automation technique but as a socio-technical
governance mechanism that encodes organizational
intent, mediates collaboration, and shapes risk
management. The best practices articulated by Dasari
(2025) have been particularly influential in framing
Infrastructure as Code as a strategic asset for multi-
cloud enterprises, capable of harmonizing security,
compliance, and operational resilience across
heterogeneous environments.

At the same time, the analysis has highlighted
enduring tensions between standardization and
autonomy, automation and human judgment, and
abstraction and transparency. These tensions
underscore the need for thoughtful governance,
robust platform design, and continuous learning if
Infrastructure as Code is to fulfill its promise. As
software ecosystems continue to grow in complexity
and scale, the challenge for both researchers and
practitioners will be to develop models, tools, and
organizational practices that harness the power of

American Journal of Applied Science and Technology

codified infrastructure while remaining attentive to its
social and ethical dimensions. In this sense,
Infrastructure as Code stands not at the periphery but
at the very heart of the future of software
engineering.
REFERENCES

1. Soares, E., Sizilio, G., Santos, J., da Costa, D. A,
and Kulesza, U. (2022). The effects of continuous
integration on software development: A
systematic literature review. Empirical Software
Engineering, 27(3), 78.

2. Aune, A. A. W. (2024). Towards enhanced
developer experience: An empirical study on
successful adoption of internal developer
platforms. Master’s Thesis, NTNU.

3. Beetz, F., and Harrer, S. (2022). GitOps: The
Evolution of DevOps? IEEE Software, 39(4), 70-75.

4. Dasari, H. (2025). Infrastructure as code (laC) best
practices for multi-cloud deployments in
enterprises. International Journal of Networks and
Security, 5(1), 174-186.

5. Khalid, A., Raza, M., Afsar, P., Khan, R. A,
Mohmand, M. I., and Rahman, H. U. (2025). A
SWOT analysis of software development life cycle
security metrics. Journal of Software: Evolution
and Process, 37(1), e2744.

6. Newman, S. (2021). Building Microservices (2nd
ed.). O’Reilly Media.

7. Moriconi, F. (2024). Improving software
development life cycle using data-driven
approaches. Doctoral Dissertation, Sorbonne
University.

8. Indika Kumara, I., et al. (2021). The do’s and don’ts
of infrastructure code: A systematic gray literature
review. Information and Software Technology,
137, 106593.

9. Srinivasan, V., Rajkumar, M., Santhanam, S., and
Garg, A. (2025). PlatFab: A platform engineering
approach to improve developer productivity.
Journal of Information Systems Engineering and
Business Intelligence, 11(1), 79-90.

10. Ali, J. M. (2023). DevOps and continuous
integration/continuous deployment (CI/CD)
automation. Advances in Engineering Innovation,
4,38-42.

11. van de Kamp, R., Bakker, K., and Zhao, Z. (2023).
Paving the path towards platform engineering
using a comprehensive reference model. In
International Conference on Enterprise Design,
Operations, and Computing, 177-193.

12. Chandrasekaran, S. (2024). Optimizing software

303 https://theusajournals.com/index.php/ajast

American Journal of Applied Science and Technology (ISSN: 2771-2745)

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

quality through internal developer portals.
International Journal of Science and Research,
13(1), 696—699.

Kunchenapalli, V. (2024). Good developer
experience with platform engineering and
DevOps. International Journal for Research in
Applied Science and Engineering Technology,
12(3), 2240-2244.

Fowler, M. (2014). Microservices.
martinfowler.com.

Azad, N., and Hyrynsalmi, S. (2023). DevOps
critical success factors — A systematic literature
review. Information and Software Technology,
157, 107150.

Leite, L., Pinto, G., Kon, F., and Meirelles, P.
(2021). The organization of software teams in the
quest for continuous delivery: A grounded theory
approach. Information and Software Technology,
139, 106672.

Morris, K. (2016). Infrastructure as Code:
Managing Servers in the Cloud. O’Reilly Media.

Ciancarini, P., Giancarlo, R., Grimaudo, G.,
Missiroli, M., and Xia, T. C. (2025). The design and
realization of a self-hosted and open-source agile
internal development platform. IEEE Access, 13,
79516-79533.

Aslina, Y. R., and Nugraha, I. G. B. B. (2024).
Exploring potential Al use cases in internal
developer portals: A path to enhanced developer
experience. IEEE International Conference on Data
and Software Engineering, 143—-148.

Jani, Y. (2023). Implementing continuous
integration and continuous deployment (CI/CD) in
modern software development. International
Journal of Science and Research, 12(6), 2984—
2987.

Shropshire, J., and van Devender, M. S. (2024).
Analyzing risks to internal developer platforms.

Bayer, F. (2024). How metamodeling concepts
improve internal developer platforms and cloud
platforms to foster business agility. In
Metamodeling: Applications and Trajectories to
the Future. Springer Nature Switzerland.

Leite, L., et al. (2020). A Survey of DevOps
Concepts and Challenges. ACM Computing
Surveys, 52(6), 1-35.

Gomes, A. (2023). Deploy-oriented specification of
cloud native applications. Master’s Thesis,
Universidade do Porto.

Weaveworks. (2024). GitOps.

American Journal of Applied Science and Technology

304

https://theusajournals.com/index.php/ajast

