
 

VOLUMEVol.05 Issue11 2025 

PAGE NO.297-304 

 
 
 
 
 

Credible, Privacy-Preserving, And Maintainable Machine 
Learning Systems: An Integrated Framework Grounded 
In Data Quality, Underspecification, And Software 
Engineering Principles 
 

Dr. Lucien Moreau 
Université de Montréal, Canada 

 

Received:01November2025;Accepted:25November2025;Published:30November2025 

Abstract:The accelerating adoption of multi-cloud strategies, platform engineering, and DevOps has 
fundamentally altered how contemporary software systems are conceived, governed, and operated. At the 
heart of this transformation lies Infrastructure as Code, a paradigm that recasts infrastructure provisioning, 
configuration, and lifecycle management into executable, version-controlled, and continuously deployed 
software artifacts. While Infrastructure as Code has been widely celebrated for its promise of reproducibility, 
speed, and alignment with agile and DevOps practices, its deployment in large-scale, heterogeneous multi-cloud 
environments raises deep questions of governance, security, organizational coordination, and developer 
experience. Existing scholarship has often treated Infrastructure as Code as a purely technical instrument, 
focusing on toolchains, syntax, and automation pipelines. In contrast, this article develops an integrated socio-
technical perspective in which Infrastructure as Code is positioned as both a technological substrate and a 
governance mechanism that mediates power, risk, accountability, and organizational learning across the 
software development lifecycle. 

Drawing on a comprehensive synthesis of contemporary literature on Infrastructure as Code, DevOps, 
continuous integration and delivery, internal developer platforms, platform engineering, microservices, and 
software lifecycle security, this study constructs a conceptual and interpretive framework for understanding 
how Infrastructure as Code operates in multi-cloud enterprises. Central to this framework is the recognition, 
articulated by Dasari (2025), that Infrastructure as Code in multi-cloud deployments is not merely about 
codifying infrastructure but about institutionalizing best practices that span security, compliance, 
interoperability, and operational resilience across organizational and technological boundaries. By situating 
Dasari’s analysis within broader debates on developer experience, data-driven lifecycle governance, and GitOps-
based operational models, the article illuminates how Infrastructure as Code becomes a critical site where 
strategic intent, operational reality, and human practice converge. 

The discussion elaborates how Infrastructure as Code reshapes notions of responsibility, security assurance, and 
organizational learning. It critically engages with competing perspectives that either celebrate full automation or 
warn against over-reliance on code-driven governance, arguing instead for a balanced model in which 
Infrastructure as Code is embedded within internal developer platforms, supported by data-driven feedback 
loops, and governed through explicit socio-technical agreements. By integrating insights from platform 
engineering, DevOps success factors, and software lifecycle security metrics, the article advances a holistic 
understanding of how enterprises can leverage Infrastructure as Code to achieve agility without sacrificing 
control. In doing so, it contributes a theoretically grounded and practically relevant account of Infrastructure as 
Code as a cornerstone of modern multi-cloud software ecosystems. 

 

Keywords 
 

Infrastructure as Code; Multi-Cloud Governance; Platform Engineering; DevOps; Internal Developer Platforms; 

 



American Journal of Applied Science and Technology 298 https://theusajournals.com/index.php/ajast 

American Journal of Applied Science and Technology (ISSN: 2771-2745) 
 

 

Software Lifecycle Security 

 

INTRODUCTION: 

The last decade of software engineering has been 
marked by a profound reconfiguration of how digital 
systems are built, deployed, and governed. Traditional 
monolithic architectures and manually managed 
infrastructure have gradually given way to 
microservices, containerized workloads, continuous 
delivery pipelines, and cloud-native platforms that 
promise unprecedented scalability and flexibility 
(Newman, 2021; Fowler, 2014). This transformation 
has not been merely technological; it has also 
redefined organizational structures, professional roles, 
and the epistemic foundations of software 
development. DevOps, as both a movement and a set 
of practices, has sought to bridge the historical divide 
between development and operations, emphasizing 
shared responsibility, automation, and rapid feedback 
(Jahıć and Buzađıja, 2023; Leite et al., 2020). Yet as 
enterprises have increasingly adopted multi-cloud 
strategies to avoid vendor lock-in, enhance resilience, 
and comply with diverse regulatory regimes, the 
complexity of managing distributed infrastructure has 
grown dramatically (Gartner, 2024; RightScale, 2024). 

Within this evolving landscape, Infrastructure as Code 
has emerged as a central organizing principle. At its 
core, Infrastructure as Code refers to the practice of 
specifying, provisioning, and managing infrastructure 
through machine-readable definition files rather than 
through manual configuration or ad hoc scripting 
(Morris, 2016). By treating servers, networks, storage, 
and even higher-level services as software artifacts, 
Infrastructure as Code enables version control, 
automated testing, peer review, and reproducible 
deployments. These characteristics align closely with 
the values of DevOps and continuous delivery, 
promising to reduce configuration drift, accelerate 
deployment cycles, and improve reliability (Soares et 
al., 2022; Ali, 2023). However, as Indika Kumara et al. 
(2021) caution, the codification of infrastructure also 
introduces new categories of risk, including 
misconfiguration at scale, opaque dependencies, and 
the potential for security vulnerabilities to propagate 
rapidly across environments. 

The strategic importance of Infrastructure as Code 
becomes even more pronounced in multi-cloud 
enterprises, where infrastructure spans multiple 
providers, regions, and regulatory contexts. Dasari 
(2025) provides one of the most systematic and 
contemporary analyses of this challenge, arguing that 
best practices for Infrastructure as Code in multi-cloud 
deployments must address not only technical 

interoperability but also governance, compliance, and 
organizational coordination. According to Dasari, the 
promise of multi-cloud architectures can only be 
realized when Infrastructure as Code is designed to 
encapsulate provider-agnostic abstractions, enforce 
security and compliance policies, and support 
automated auditing across heterogeneous 
environments. This perspective reframes 
Infrastructure as Code from a narrow automation tool 
into a strategic governance mechanism that encodes 
organizational intent into executable artifacts. 

Despite this growing recognition, much of the existing 
literature continues to treat Infrastructure as Code in 
isolation from the broader ecosystem of platform 
engineering and developer experience. Platform 
engineering, as articulated by van de Kamp et al. 
(2023) and Srinivasan et al. (2025), emphasizes the 
creation of internal platforms that abstract 
complexity, provide self-service capabilities, and 
enable development teams to focus on business logic 
rather than infrastructure plumbing. Internal 
developer portals and platforms, as explored by Aslina 
and Nugraha (2024) and Aune (2024), serve as socio-
technical interfaces through which developers interact 
with these platforms, shaping perceptions of usability, 
trust, and autonomy. Yet the relationship between 
Infrastructure as Code and these platforms remains 
under-theorized. Is Infrastructure as Code merely an 
implementation detail of platform engineering, or 
does it play a more constitutive role in shaping how 
platforms are governed and experienced? 

A parallel gap exists in the literature on software 
lifecycle security and data-driven governance. Khalid 
et al. (2025) and Moriconi (2024) emphasize the need 
for systematic metrics and analytics to assess and 
improve security across the software development 
lifecycle. Continuous integration and delivery 
pipelines, while powerful, can also become vectors for 
risk if not properly governed (Azad and Hyrynsalmi, 
2023; Soares et al., 2022). Infrastructure as Code sits 
at a critical junction in these pipelines, as it defines the 
very environments in which code is built, tested, and 
deployed. Dasari’s (2025) insistence on embedding 
security and compliance into Infrastructure as Code 
thus resonates strongly with these concerns, 
suggesting that infrastructure definitions themselves 
become artifacts of risk management and 
organizational accountability. 

The problem that motivates this article is therefore 
not simply how to implement Infrastructure as Code in 
a technical sense, but how to conceptualize and 



American Journal of Applied Science and Technology 299 https://theusajournals.com/index.php/ajast 

American Journal of Applied Science and Technology (ISSN: 2771-2745) 
 

 

govern it within the complex socio-technical systems 
of modern multi-cloud enterprises. Existing studies 
offer valuable but fragmented insights: DevOps 
research highlights cultural and organizational factors; 
platform engineering literature focuses on abstraction 
and productivity; security scholarship emphasizes 
metrics and controls; and Infrastructure as Code 
research often centers on tooling and best practices. 
What is lacking is an integrative framework that brings 
these strands together to explain how Infrastructure 
as Code operates as a linchpin of contemporary 
software ecosystems. 

This literature gap has both theoretical and practical 
consequences. Theoretically, without an integrated 
perspective, it is difficult to understand how codified 
infrastructure reshapes power relations between 
teams, how it mediates trust between developers and 
operators, and how it institutionalizes certain values, 
such as security or speed, over others. Practically, 
enterprises risk adopting Infrastructure as Code in a 
superficial manner, focusing on automation while 
neglecting governance, developer experience, and 
long-term sustainability. As Shropshire and van 
Devender (2024) observe, internal developer 
platforms and the infrastructures that underpin them 
can become sources of systemic risk if not properly 
designed and governed. 

Against this backdrop, this article advances a 
comprehensive analysis of Infrastructure as Code in 
the context of platform-engineered, multi-cloud 
software lifecycles. By synthesizing the insights of 
Dasari (2025) with a broad range of contemporary 
scholarship, it seeks to articulate how Infrastructure as 
Code can be understood as a socio-technical 
governance mechanism rather than merely a technical 
convenience. In doing so, it contributes to ongoing 
debates about the future of DevOps, the role of 
platform engineering, and the pursuit of secure and 
sustainable software delivery at scale (Kunchenapalli, 
2024; Chandrasekaran, 2024). 

The remainder of the article develops this argument 
through a detailed methodological synthesis of the 
literature, followed by an interpretive analysis of key 
themes and tensions. Throughout, particular attention 
is paid to how multi-cloud complexity amplifies both 
the opportunities and the challenges of Infrastructure 
as Code, and how best practices, as articulated by 
Dasari (2025), can be situated within a broader 
theoretical and organizational context. In this way, the 
article aims to provide both a deep scholarly 
contribution and a practically relevant guide for 
researchers and practitioners navigating the evolving 
terrain of cloud-native software engineering. 

METHODOLOGY 

The methodological foundation of this study is rooted 
in qualitative, interpretive research traditions within 
information systems and software engineering 
scholarship, which emphasize theory building through 
systematic engagement with existing literature rather 
than through primary data collection alone (Moriconi, 
2024; Leite et al., 2021). Given the complexity and 
socio-technical nature of Infrastructure as Code in 
multi-cloud environments, a purely quantitative or 
tool-centric analysis would be insufficient to capture 
the breadth of organizational, cultural, and 
governance dynamics involved. Instead, this research 
adopts an integrative literature synthesis approach 
that draws on peer-reviewed journal articles, 
conference proceedings, doctoral and master’s theses, 
and authoritative monographs to construct a coherent 
analytical framework. 

The corpus of literature for this study was defined by 
the references provided, which collectively span 
several interrelated domains: Infrastructure as Code 
and cloud-native operations (Morris, 2016; Indika 
Kumara et al., 2021; Dasari, 2025), DevOps and 
continuous integration and delivery (Ali, 2023; Jani, 
2023; Soares et al., 2022), platform engineering and 
internal developer platforms (Srinivasan et al., 2025; 
van de Kamp et al., 2023; Aune, 2024), software 
lifecycle security and data-driven governance (Khalid 
et al., 2025; Moriconi, 2024), and microservices-based 
architectures (Newman, 2021; Fowler, 2014). This 
deliberate breadth reflects the premise that 
Infrastructure as Code cannot be adequately 
understood in isolation from the organizational and 
architectural contexts in which it operates. 

The analytical procedure involved several iterative 
stages. First, each source was examined to identify its 
core arguments, conceptual frameworks, and 
empirical claims related to automation, governance, 
security, and developer experience. Particular 
attention was paid to how authors conceptualized the 
relationship between code, infrastructure, and 
organizational practice. For example, Dasari (2025) 
was analyzed not only for its prescriptive best 
practices but also for its implicit assumptions about 
enterprise governance and risk management. 
Similarly, platform engineering studies such as 
Srinivasan et al. (2025) and van de Kamp et al. (2023) 
were interrogated for how they positioned 
infrastructure abstractions within broader productivity 
and governance narratives. 

Second, these concepts were coded and clustered into 
thematic categories, including automation and 
reproducibility, security and compliance, 



American Journal of Applied Science and Technology 300 https://theusajournals.com/index.php/ajast 

American Journal of Applied Science and Technology (ISSN: 2771-2745) 
 

 

organizational coordination, developer experience, 
and multi-cloud complexity. This thematic analysis 
allowed for the identification of convergences and 
divergences across the literature, revealing, for 
instance, how DevOps scholarship’s emphasis on 
cultural change intersects with Infrastructure as 
Code’s emphasis on codification (Azad and 
Hyrynsalmi, 2023; Dasari, 2025). The goal was not to 
reduce the literature to a set of discrete variables but 
to trace patterns of meaning and debate that inform 
how Infrastructure as Code is understood and 
practiced. 

Third, an interpretive synthesis was conducted in 
which these themes were woven into a coherent 
narrative about Infrastructure as Code as a socio-
technical governance mechanism. This involved 
comparing and contrasting different scholarly 
viewpoints, such as the more technology-centric 
perspectives found in Morris (2016) and Indika 
Kumara et al. (2021) with the more organizationally 
oriented analyses of Aune (2024) and Leite et al. 
(2021). Throughout this process, Dasari’s (2025) 
framework for multi-cloud best practices served as a 
central reference point, anchoring the analysis in the 
specific challenges of heterogeneous cloud 
environments. 

The methodological rationale for this approach rests 
on the recognition that emerging phenomena like 
platform engineering and Infrastructure as Code are 
still in the process of theoretical stabilization. As Bayer 
(2024) argues in his discussion of metamodeling and 
internal platforms, conceptual clarity often lags 
behind technological innovation, necessitating 
reflective and integrative scholarship. By synthesizing 
a diverse body of work, this study aims to contribute 
to such conceptual clarification, offering a lens 
through which disparate findings can be interpreted as 
part of a larger socio-technical system. 

Nevertheless, this methodology also has limitations. 
Because it relies exclusively on secondary sources, it 
cannot capture the full richness of lived organizational 
experience or the nuances of specific enterprise 
implementations. Empirical case studies or 
ethnographic research could reveal tensions and 
practices that are not fully articulated in the literature 
(Aune, 2024; Shropshire and van Devender, 2024). 
Moreover, the rapidly evolving nature of cloud 
technologies means that some insights may become 
outdated as tools and practices change (Gartner, 
2024). Despite these constraints, the interpretive 
synthesis remains a powerful method for developing 
theory and for situating technical practices like 
Infrastructure as Code within broader organizational 
and strategic contexts (Moriconi, 2024; Khalid et al., 

2025). 

In sum, the methodology of this study is designed to 
balance rigor with interpretive depth, grounding its 
arguments in a comprehensive and critically engaged 
reading of contemporary scholarship. By doing so, it 
provides a robust foundation for the subsequent 
analysis of results and the theoretical discussion that 
follows, all of which remain anchored in the literature 
and in the best practices articulated for multi-cloud 
Infrastructure as Code by Dasari (2025). 

RESULTS 

The synthesis of the literature reveals a set of 
interrelated findings that illuminate how 
Infrastructure as Code operates within platform-
engineered, multi-cloud software lifecycles. These 
findings are not statistical outcomes but interpretive 
patterns that emerge from the convergence of 
multiple scholarly perspectives, reflecting the socio-
technical complexity of the domain (Moriconi, 2024; 
Srinivasan et al., 2025). One of the most prominent 
results is that Infrastructure as Code functions as a 
unifying layer across the software development 
lifecycle, linking development, operations, security, 
and governance through a shared, codified 
representation of infrastructure (Dasari, 2025; Morris, 
2016). 

Across the literature, Infrastructure as Code is 
consistently portrayed as a mechanism for 
reproducibility and consistency. By expressing 
infrastructure in version-controlled code, 
organizations can recreate environments reliably 
across development, testing, and production, thereby 
reducing configuration drift and deployment errors 
(Indika Kumara et al., 2021; Soares et al., 2022). This 
technical capability, however, also has organizational 
implications. It enables what Khalid et al. (2025) 
describe as measurable and auditable security 
practices, because every change to the infrastructure 
becomes traceable and reviewable. In multi-cloud 
contexts, this traceability becomes especially valuable, 
as heterogeneous provider interfaces and regulatory 
requirements can otherwise obscure accountability 
(Dasari, 2025). 

Another significant finding concerns the relationship 
between Infrastructure as Code and platform 
engineering. Studies of internal developer platforms 
and platform engineering frameworks consistently 
emphasize abstraction, self-service, and standardized 
workflows as key enablers of developer productivity 
(Srinivasan et al., 2025; van de Kamp et al., 2023). The 
literature indicates that Infrastructure as Code is not 
merely a backend automation tool in these platforms 
but a foundational artifact that encodes the platform’s 



American Journal of Applied Science and Technology 301 https://theusajournals.com/index.php/ajast 

American Journal of Applied Science and Technology (ISSN: 2771-2745) 
 

 

operational logic. As Aune (2024) observes, when 
developers interact with internal platforms, they are 
indirectly invoking Infrastructure as Code modules 
that provision and configure resources on their behalf. 
This arrangement creates a mediated relationship 
between developers and infrastructure, in which 
platform teams become custodians of codified 
operational knowledge. 

The results further suggest that this mediation has 
profound implications for developer experience and 
organizational trust. Chandrasekaran (2024) and 
Kunchenapalli (2024) argue that a positive developer 
experience depends not only on tool usability but also 
on the predictability and transparency of the 
underlying platform. Infrastructure as Code 
contributes to this predictability by ensuring that 
infrastructure behavior is defined explicitly and can be 
reviewed, tested, and improved over time (Dasari, 
2025; Indika Kumara et al., 2021). At the same time, if 
Infrastructure as Code is poorly designed or 
insufficiently documented, it can become a source of 
frustration and bottleneck, reinforcing perceptions of 
centralized control rather than empowerment 
(Shropshire and van Devender, 2024; Aune, 2024). 

Security and compliance emerge as another major 
theme in the results. The literature on software 
lifecycle security consistently highlights the need to 
shift security “left” into earlier stages of development 
and to integrate it into automated pipelines (Khalid et 
al., 2025; Azad and Hyrynsalmi, 2023). Infrastructure 
as Code plays a critical role in this shift by allowing 
security policies, network configurations, and access 
controls to be defined and enforced through code 
(Dasari, 2025; Ali, 2023). In multi-cloud environments, 
where security models and compliance requirements 
may differ across providers, codified infrastructure 
becomes a means of harmonizing and enforcing 
organizational standards (Morris, 2016; Dasari, 2025). 
This harmonization is not merely technical; it 
represents an organizational commitment to treating 
security as a first-class, continuously governed 
concern. 

The results also reveal tensions and trade-offs 
inherent in the codification of infrastructure. While 
automation and standardization can enhance 
efficiency and reduce human error, they can also 
obscure complexity and create brittle systems if not 
accompanied by adequate oversight and learning 
mechanisms (Indika Kumara et al., 2021; Soares et al., 
2022). Moriconi (2024) emphasizes the importance of 
data-driven feedback loops to monitor and adapt 
software processes, and the literature suggests that 
Infrastructure as Code provides a rich source of such 
data, capturing not only what was deployed but how 

and why it was changed. Yet without organizational 
processes to interpret and act on this data, the mere 
existence of codified infrastructure does not 
guarantee improved outcomes (Khalid et al., 2025; 
Shropshire and van Devender, 2024). 

Finally, the multi-cloud dimension amplifies all of 
these dynamics. Dasari (2025) underscores that in 
multi-cloud deployments, Infrastructure as Code must 
balance provider-specific optimizations with the need 
for portability and consistency. The literature indicates 
that this balance is both technically and 
organizationally challenging, requiring platform teams 
to make strategic decisions about abstraction layers, 
tooling, and governance structures (Srinivasan et al., 
2025; van de Kamp et al., 2023). These decisions, in 
turn, shape how developers perceive and use the 
platform, how security is enforced, and how resilient 
the organization is to change (Aune, 2024; 
Kunchenapalli, 2024). 

Together, these results paint a picture of 
Infrastructure as Code as a central, multifaceted 
element of contemporary software ecosystems. It is 
simultaneously a technical enabler, a governance 
mechanism, and a socio-organizational artifact, whose 
effects ripple across the software development 
lifecycle and are particularly pronounced in the 
complexity of multi-cloud environments (Dasari, 2025; 
Moriconi, 2024). 

DISCUSSION 

The findings of this study invite a deeper theoretical 
interpretation of Infrastructure as Code as a socio-
technical phenomenon that transcends its origins as a 
tool for automating server provisioning. By situating 
Infrastructure as Code within the intertwined domains 
of platform engineering, DevOps, and multi-cloud 
governance, it becomes possible to understand how 
codified infrastructure reshapes organizational power, 
responsibility, and knowledge production. This section 
therefore engages in a critical dialogue with existing 
scholarship, exploring the implications, tensions, and 
future trajectories of Infrastructure as Code as 
articulated across the literature (Dasari, 2025; 
Srinivasan et al., 2025; Moriconi, 2024). 

At a theoretical level, Infrastructure as Code can be 
understood as a form of institutionalization. When 
infrastructure definitions are written in code, stored in 
version control, and executed through automated 
pipelines, they become part of the organization’s 
formal memory, akin to policies or standard operating 
procedures (Morris, 2016; Indika Kumara et al., 2021). 
Dasari (2025) extends this notion by arguing that in 
multi-cloud enterprises, Infrastructure as Code 
encodes not only technical configurations but also 



American Journal of Applied Science and Technology 302 https://theusajournals.com/index.php/ajast 

American Journal of Applied Science and Technology (ISSN: 2771-2745) 
 

 

compliance requirements, security controls, and 
governance rules. In this sense, Infrastructure as Code 
acts as what sociotechnical theorists might describe as 
a “boundary object,” mediating between different 
communities of practice—developers, operators, 
security professionals, and auditors—by providing a 
shared, interpretable artifact (Aune, 2024; Shropshire 
and van Devender, 2024). 

This boundary-spanning role has profound 
implications for organizational power and 
accountability. Traditional IT operations often relied 
on tacit knowledge and manual interventions, which 
concentrated authority in the hands of experienced 
operators. Infrastructure as Code redistributes this 
authority by making infrastructure behavior explicit 
and reviewable, enabling developers and platform 
engineers to participate in decisions that were once 
opaque (Leite et al., 2021; Kunchenapalli, 2024). At 
the same time, this redistribution can create new 
forms of centralization, as platform teams become the 
gatekeepers of the code that defines the 
infrastructure (Srinivasan et al., 2025; van de Kamp et 
al., 2023). The tension between empowerment and 
control thus becomes a central theme in the 
governance of Infrastructure as Code. 

From the perspective of DevOps theory, this tension 
reflects the ongoing struggle to balance autonomy 
with standardization. DevOps advocates have long 
argued that high-performing teams require both the 
freedom to experiment and the stability provided by 
shared practices and tooling (Azad and Hyrynsalmi, 
2023; Leite et al., 2020). Infrastructure as Code 
embodies this duality: it enables rapid, self-service 
provisioning while also enforcing standardized 
configurations and policies (Dasari, 2025; Ali, 2023). In 
multi-cloud environments, where inconsistency can 
quickly lead to security gaps or operational failures, 
this standardization becomes particularly valuable, 
even as it may constrain local experimentation 
(Morris, 2016; Dasari, 2025). 

The literature on platform engineering provides a 
complementary lens through which to interpret these 
dynamics. Internal platforms, as conceptualized by 
Srinivasan et al. (2025) and Ciancarini et al. (2025), 
aim to reduce cognitive load for developers by 
encapsulating infrastructure complexity behind well-
designed interfaces. Infrastructure as Code is the 
substrate that makes this encapsulation possible, 
translating platform abstractions into concrete 
resource allocations and configurations. However, as 
Bayer (2024) notes, the success of such platforms 
depends on the quality of their underlying 
metamodels and abstractions. Poorly designed 
Infrastructure as Code can lead to rigid or leaky 

abstractions, undermining both developer experience 
and operational resilience (Aune, 2024; 
Chandrasekaran, 2024). 

Security considerations further complicate this 
picture. The integration of Infrastructure as Code into 
CI/CD pipelines has been widely promoted as a means 
of shifting security left and ensuring that 
vulnerabilities are detected and remediated early 
(Khalid et al., 2025; Jani, 2023). Dasari (2025) 
emphasizes that in multi-cloud settings, codified 
security controls are essential for maintaining 
consistent protection across disparate environments. 
Yet the literature also warns against an overly 
mechanistic view of security, in which compliance is 
reduced to passing automated checks (Azad and 
Hyrynsalmi, 2023; Soares et al., 2022). True security, 
these authors argue, requires ongoing human 
judgment, contextual awareness, and organizational 
learning—qualities that cannot be fully captured in 
code. 

This critique points to a broader limitation of 
Infrastructure as Code as a governance mechanism. 
While codification enhances transparency and 
repeatability, it can also obscure the rationale behind 
decisions, particularly when code is reused or 
inherited without adequate documentation (Indika 
Kumara et al., 2021; Shropshire and van Devender, 
2024). In multi-cloud enterprises, where teams may 
operate across organizational and geographic 
boundaries, this opacity can hinder collaboration and 
trust. Moriconi’s (2024) call for data-driven 
governance highlights the need to complement 
Infrastructure as Code with analytics and feedback 
systems that help organizations understand not just 
what was deployed, but how it affects performance, 
security, and user experience. 

The discussion also raises questions about the future 
evolution of Infrastructure as Code in the context of 
emerging practices such as GitOps. Beetz and Harrer 
(2022) and Weaveworks (2024) describe GitOps as an 
operational model in which Git repositories become 
the single source of truth for both application and 
infrastructure state. This model aligns closely with the 
principles articulated by Dasari (2025), as it reinforces 
the idea that codified definitions should drive actual 
system behavior. However, GitOps also intensifies the 
coupling between code repositories and production 
systems, making the governance of Infrastructure as 
Code even more critical. Errors or malicious changes in 
a repository can have immediate, far-reaching 
consequences, particularly in automated multi-cloud 
pipelines (Indika Kumara et al., 2021; Khalid et al., 
2025). 



American Journal of Applied Science and Technology 303 https://theusajournals.com/index.php/ajast 

American Journal of Applied Science and Technology (ISSN: 2771-2745) 
 

 

Looking forward, the literature suggests several 
avenues for future research and practice. One is the 
need for richer conceptual models that integrate 
Infrastructure as Code with organizational theory, 
platform governance, and developer experience 
(Bayer, 2024; Aune, 2024). Another is the exploration 
of how data-driven techniques, such as those 
proposed by Moriconi (2024), can be used to analyze 
Infrastructure as Code repositories and pipelines, 
identifying patterns of risk, inefficiency, or innovation. 
Finally, as multi-cloud strategies continue to evolve, 
there is a pressing need for empirical studies that 
examine how different governance models and 
abstraction strategies affect real-world outcomes 
(Dasari, 2025; Srinivasan et al., 2025). 

In synthesizing these perspectives, it becomes clear 
that Infrastructure as Code is neither a panacea nor a 
mere technical detail. It is a powerful but ambivalent 
force that can enable agility, security, and 
collaboration, while also introducing new forms of 
complexity and risk. Understanding and governing this 
force requires a holistic, socio-technical perspective 
that acknowledges the interplay of code, people, and 
institutions in the contemporary software enterprise 
(Dasari, 2025; Moriconi, 2024). 

CONCLUSION 

This article has advanced a comprehensive, literature-
grounded analysis of Infrastructure as Code as a 
central organizing principle of platform-engineered, 
multi-cloud software lifecycles. By integrating insights 
from DevOps, platform engineering, software lifecycle 
security, and cloud-native architecture, it has shown 
that Infrastructure as Code functions not merely as an 
automation technique but as a socio-technical 
governance mechanism that encodes organizational 
intent, mediates collaboration, and shapes risk 
management. The best practices articulated by Dasari 
(2025) have been particularly influential in framing 
Infrastructure as Code as a strategic asset for multi-
cloud enterprises, capable of harmonizing security, 
compliance, and operational resilience across 
heterogeneous environments. 

At the same time, the analysis has highlighted 
enduring tensions between standardization and 
autonomy, automation and human judgment, and 
abstraction and transparency. These tensions 
underscore the need for thoughtful governance, 
robust platform design, and continuous learning if 
Infrastructure as Code is to fulfill its promise. As 
software ecosystems continue to grow in complexity 
and scale, the challenge for both researchers and 
practitioners will be to develop models, tools, and 
organizational practices that harness the power of 

codified infrastructure while remaining attentive to its 
social and ethical dimensions. In this sense, 
Infrastructure as Code stands not at the periphery but 
at the very heart of the future of software 
engineering. 

REFERENCES 

1. Soares, E., Sizilio, G., Santos, J., da Costa, D. A., 
and Kulesza, U. (2022). The effects of continuous 
integration on software development: A 
systematic literature review. Empirical Software 
Engineering, 27(3), 78. 

2. Aune, A. A. W. (2024). Towards enhanced 
developer experience: An empirical study on 
successful adoption of internal developer 
platforms. Master’s Thesis, NTNU. 

3. Beetz, F., and Harrer, S. (2022). GitOps: The 
Evolution of DevOps? IEEE Software, 39(4), 70–75. 

4. Dasari, H. (2025). Infrastructure as code (IaC) best 
practices for multi-cloud deployments in 
enterprises. International Journal of Networks and 
Security, 5(1), 174–186. 

5. Khalid, A., Raza, M., Afsar, P., Khan, R. A., 
Mohmand, M. I., and Rahman, H. U. (2025). A 
SWOT analysis of software development life cycle 
security metrics. Journal of Software: Evolution 
and Process, 37(1), e2744. 

6. Newman, S. (2021). Building Microservices (2nd 
ed.). O’Reilly Media. 

7. Moriconi, F. (2024). Improving software 
development life cycle using data-driven 
approaches. Doctoral Dissertation, Sorbonne 
University. 

8. Indika Kumara, I., et al. (2021). The do’s and don’ts 
of infrastructure code: A systematic gray literature 
review. Information and Software Technology, 
137, 106593. 

9. Srinivasan, V., Rajkumar, M., Santhanam, S., and 
Garg, A. (2025). PlatFab: A platform engineering 
approach to improve developer productivity. 
Journal of Information Systems Engineering and 
Business Intelligence, 11(1), 79–90. 

10. Ali, J. M. (2023). DevOps and continuous 
integration/continuous deployment (CI/CD) 
automation. Advances in Engineering Innovation, 
4, 38–42. 

11. van de Kamp, R., Bakker, K., and Zhao, Z. (2023). 
Paving the path towards platform engineering 
using a comprehensive reference model. In 
International Conference on Enterprise Design, 
Operations, and Computing, 177–193. 

12. Chandrasekaran, S. (2024). Optimizing software 



American Journal of Applied Science and Technology 304 https://theusajournals.com/index.php/ajast 

American Journal of Applied Science and Technology (ISSN: 2771-2745) 
 

 

quality through internal developer portals. 
International Journal of Science and Research, 
13(1), 696–699. 

13. Kunchenapalli, V. (2024). Good developer 
experience with platform engineering and 
DevOps. International Journal for Research in 
Applied Science and Engineering Technology, 
12(3), 2240–2244. 

14. Fowler, M. (2014). Microservices. 
martinfowler.com. 

15. Azad, N., and Hyrynsalmi, S. (2023). DevOps 
critical success factors — A systematic literature 
review. Information and Software Technology, 
157, 107150. 

16. Leite, L., Pinto, G., Kon, F., and Meirelles, P. 
(2021). The organization of software teams in the 
quest for continuous delivery: A grounded theory 
approach. Information and Software Technology, 
139, 106672. 

17. Morris, K. (2016). Infrastructure as Code: 
Managing Servers in the Cloud. O’Reilly Media. 

18. Ciancarini, P., Giancarlo, R., Grimaudo, G., 
Missiroli, M., and Xia, T. C. (2025). The design and 
realization of a self-hosted and open-source agile 
internal development platform. IEEE Access, 13, 
79516–79533. 

19. Aslina, Y. R., and Nugraha, I. G. B. B. (2024). 
Exploring potential AI use cases in internal 
developer portals: A path to enhanced developer 
experience. IEEE International Conference on Data 
and Software Engineering, 143–148. 

20. Jani, Y. (2023). Implementing continuous 
integration and continuous deployment (CI/CD) in 
modern software development. International 
Journal of Science and Research, 12(6), 2984–
2987. 

21. Shropshire, J., and van Devender, M. S. (2024). 
Analyzing risks to internal developer platforms. 

22. Bayer, F. (2024). How metamodeling concepts 
improve internal developer platforms and cloud 
platforms to foster business agility. In 
Metamodeling: Applications and Trajectories to 
the Future. Springer Nature Switzerland. 

23. Leite, L., et al. (2020). A Survey of DevOps 
Concepts and Challenges. ACM Computing 
Surveys, 52(6), 1–35. 

24. Gomes, A. (2023). Deploy-oriented specification of 
cloud native applications. Master’s Thesis, 
Universidade do Porto. 

25. Weaveworks. (2024). GitOps. 


