ol &S

%/ y: ;f&,gf g Vol.05 Issue 11 2025
k — 283-287
0SCAR PUBLISHING

ervices

American Journal of Applied Science
and Technology

Architecting Secure and Sustainable Enterprise Java
Delivery Pipelines: Managing Mixed Java Versions,
Legacy Modularity, and DevSecOps Automation in Non-

Containerized CI/CD Environments

Dr. Alexander M. Rothwell
Department of Computer Science, Westbridge University, United Kingdom

Received: 10 September 2025; Accepted: 02 October 2025; Published: 05 November 2025

Abstract: Enterprise Java ecosystems continue to operate under complex constraints shaped by long-lived legacy
systems, mixed Java version dependencies, stringent regulatory requirements, and cautious adoption of
containerization technologies. While cloud-native and container-based paradigms dominate contemporary
discourse, a substantial proportion of mission-critical enterprise systems still rely on non-containerized continuous
integration and continuous delivery (CI/CD) pipelines. These environments face unique challenges, particularly
when managing multiple Java versions, modularization transitions, dependency risk propagation, and integrated
security controls without disrupting operational stability. This research presents an in-depth, theory-driven
examination of enterprise-grade CI/CD pipeline architectures for mixed Java version environments using Jenkins in
non-containerized contexts. Drawing exclusively from established academic, industry, and standards-based
references, the study synthesizes insights from Java platform evolution, modularity research, garbage collection
optimization, dependency management, and DevSecOps governance frameworks. The methodology employs a
qualitative analytical approach, integrating comparative literature analysis, architectural reasoning, and process-
oriented interpretation to derive best-practice patterns. The findings reveal that sustainable pipeline design in non-
containerized environments depends on deliberate version isolation strategies, disciplined dependency
governance, modular refactoring aligned with Java Platform Module System principles, and deeply embedded
security automation. The discussion critically evaluates trade-offs between modernization and operational risk,
highlighting how policy-as-code, static and dynamic analysis tools, and compliance-driven observability can be
harmonized within Jenkins-centric pipelines. The study concludes that non-containerized CI/CD architectures, when
systematically engineered, remain viable and strategically relevant, offering a pragmatic modernization pathway
for enterprises balancing innovation with legacy continuity.

Keywords: Enterprise Java, CI/CD pipelines, Jenkins, DevSecOps, Java modularity, dependency management

INTRODUCTION
considerations (Gupta & Saxena, 2020). As a result,

The Java programming language and its surrounding many enterprises operate heterogeneous Java
ecosystem have remained foundational to enterprise environments where multiple Java versions coexist,
software development for over two decades. Despite ranging from legacy long-term support releases to
waves of technological transformation driven by more recent iterations incorporating modern
cloud computing, microservices, and container language and runtime features (Venkat & Saito,
orchestration platforms, Java continues to underpin a 2022).

vast array of mission-critical systems in finance,

telecommunications, healthcare, and government Continuous integration and continuous delivery
sectors. These systems are often characterized by practices have become central to maintaining
long operational lifespans, complex dependency software quality and delivery velocity in such
structures, and conservative change management environments. However, the dominant narratives
practices shaped by regulatory and risk around CI/CD frequently assume containerized

American Journal of Applied Science and Technology 283 https://theusajournals.com/index.php/ajast

https://doi.org/10.37547/ajast/Volume05Issue11-02
https://doi.org/10.37547/ajast/Volume05Issue11-02

American Journal of Applied Science and Technology (ISSN: 2771-2745)

deployments and cloud-native infrastructures. This
assumption marginalizes a significant portion of
enterprise reality, where non-containerized pipelines
remain prevalent due to operational inertia,
compliance constraints, performance predictability
requirements, or the prohibitive cost of large-scale
architectural rewrites (Tomlinson, 2021). Jenkins, as a
widely adopted automation server, continues to
serve as the backbone of CI/CD processes in these
contexts, offering extensibility and flexibility that
align with enterprise governance models (Jenkins,
2023; Jenkins Project, 2024).

Managing mixed Java versions within a single CI/CD
pipeline introduces multifaceted challenges. Build
tools, runtime behaviors, garbage collection
mechanisms, and module systems vary across Java
releases, creating subtle compatibility risks that can
manifest as performance degradation, security
vulnerabilities, or deployment failures (Chen &
Thakkar, 2021; OpenlDK, 2021). The introduction of
the Java Platform Module System (JPMS) in Java 9
further complicated the landscape by imposing
explicit modular boundaries, exposing architectural
weaknesses in legacy codebases that evolved under
classpath-based assumptions (Deligiannis,
Smaragdakis, & Chatrchyan, 2019).

Simultaneously, the growing emphasis on DevSecOps
demands the seamless integration of security
controls throughout the software delivery lifecycle.
Enterprises are increasingly expected to embed
vulnerability scanning, dependency analysis, policy
enforcement, and compliance verification directly
into CI/CD pipelines without compromising
development flow (Mehta, 2022). Tools such as Trivy,
OWASP Dependency-Check, SonarQube, and policy-
as-code frameworks exemplify this shift, yet their
effective orchestration within non-containerized,
mixed-version Java pipelines remains underexplored
in academic literature (Aqua Security, 2023; OWASP
Foundation, 2023; SonarSource, 2024; Open Policy
Agent, 2023).

This research addresses this gap by providing a
comprehensive, theoretically grounded exploration
of enterprise-grade CI/CD pipelines for mixed Java
version environments operating without containers.
The study synthesizes findings from empirical
software engineering research, Java platform
evolution studies, dependency risk analyses, and
security governance frameworks to construct an
integrated perspective on sustainable pipeline
design. By focusing on Jenkins-centric architectures
and emphasizing modularity, dependency

American Journal of Applied Science and Technology

284

management, and DevSecOps integration, the article
contributes a nuanced understanding of how
enterprises can modernize incrementally while
preserving operational stability.

METHODOLOGY

The methodological approach adopted in this study is
qualitative and analytical, grounded in an extensive
synthesis of peer-reviewed academic literature,
industry guides, standards documentation, and
authoritative tool documentation. Given the
complexity and socio-technical nature of enterprise
CI/CD systems, a purely quantitative or experimental
methodology would inadequately capture the
architectural, organizational, and governance
dimensions involved. Instead, the research employs
an interpretive framework that integrates theoretical
elaboration with comparative analysis across multiple
sources.

The first methodological step involved categorizing
the provided references into thematic domains,
including Java platform evolution, modularity and

legacy system transformation, CI/CD pipeline
architecture, dependency and risk management, and
DevSecOps security integration. This thematic

classification enabled a structured analysis of how
individual concepts intersect and influence pipeline
design decisions. For example, studies on garbage
collection optimization and modularization were
analyzed not in isolation but in relation to build
reproducibility and runtime consistency across Java
versions (Chen & Thakkar, 2021; Deligiannis et al.,
2021).

The second step focused on architectural reasoning,
wherein concepts from Jenkins pipeline design were
examined through the lens of non-containerized
execution environments. Jenkins documentation and
empirical studies on legacy CI/CD practices were used
to infer patterns of toolchain orchestration,
environment isolation, and version management
(Kathi, 2025; Jenkins Project, 2024). This reasoning
was further enriched by examining how policy-as-
code and security scanning tools could be embedded
into pipeline stages without introducing excessive
friction or false positives (Open Policy Agent, 2023;
SonarSource, 2023).

The third methodological component involved
comparative synthesis. Contrasting perspectives from
empirical studies on Java modularity adoption were
analyzed to identify recurring challenges, such as split
packages, reflective access violations, and

https://theusajournals.com/index.php/ajast

American Journal of Applied Science and Technology (ISSN: 2771-2745)

dependency graph instability (Deligiannis, Spinellis, &
Gousios, 2022). These challenges were then mapped
to CI/CD implications, particularly in mixed-version
pipelines where different modules may target
different Java baselines.

Throughout the analysis, strict adherence to the
provided references was maintained. All claims and
interpretations were explicitly grounded in cited
sources, and no external assumptions or
undocumented practices were introduced. The
methodology emphasizes depth over breadth,
prioritizing exhaustive theoretical elaboration to
illuminate the nuanced trade-offs inherent in
enterprise pipeline design.

RESULTS

The analysis yields several interrelated findings that
collectively illuminate the dynamics of enterprise-
grade CI/CD pipelines in mixed Java version, non-
containerized environments. One of the most
prominent results is the centrality of deliberate
version isolation strategies. Enterprises that
successfully manage mixed Java versions do not rely
on ad hoc configuration but instead implement
structured mechanisms for selecting, validating, and
enforcing Java runtimes at each pipeline stage (Kathi,
2025). Jenkins facilitates this through toolchains and
environment directives, allowing builds to target
specific Java versions while sharing a common
automation framework (Jenkins, 2023).

Another significant finding concerns the role of
modularity in stabilizing pipeline behavior. Empirical
studies consistently show that legacy Java systems
often exhibit weak modular boundaries, leading to
hidden dependencies and brittle builds when
transitioning to newer Java versions (Deligiannis et
al., 2021). The adoption of JPMS, while initially
disruptive, ultimately enhances pipeline predictability
by making dependencies explicit and enabling more
precise impact analysis during upgrades (Deligiannis
et al.,, 2019). Pipelines that incorporate module-
aware compilation and testing stages are better
equipped to detect incompatibilities early, reducing
downstream failures.

Dependency management emerges as a critical
determinant of pipeline security and reliability.

Research on transitive dependency risks
demonstrates that vulnerabilities and breaking
changes often propagate indirectly through

dependency trees, complicating upgrade decisions
(Shah et al., 2020; Shah, Reddy, & Ma, 2022). The

American Journal of Applied Science and Technology

285

results indicate that pipelines integrating automated

dependency analysis tools, such as OWASP
Dependency-Check and Snyk-style vulnerability
assessments, significantly improve risk visibility

(OWASP Foundation, 2023; Snyk Ltd., 2023). When
combined with policy-as-code enforcement, these
tools enable consistent governance across projects
and Java versions (Open Policy Agent, 2023).

From a performance perspective, garbage collection
behavior remains a nontrivial concern in mixed-
version environments. Different Java releases
introduce distinct garbage collectors and tuning
options, which can influence application latency and
throughput (Chen & Thakkar, 2021). Pipelines that
include microbenchmarking and performance
regression checks, informed by tools like the Java
Microbenchmark Harness, are better positioned to
detect runtime regressions introduced by version
changes (Oracle Corporation, 2022).

Security integration results highlight the feasibility of
comprehensive DevSecOps practices even in non-
containerized pipelines. Static analysis tools, dynamic
testing frameworks, and runtime observability
platforms can be orchestrated within Jenkins stages
to provide layered security assurance (SonarSource,
2024; OWASP Foundation, 2023). Importantly, the
findings suggest that non-containerized
environments do not inherently preclude advanced
security automation; rather, success depends on
disciplined pipeline design and clear governance
models (Mehta, 2022).

DISCUSSION

The results underscore the enduring relevance of
non-containerized Cl/CD pipelines in enterprise Java
ecosystems. While containerization offers undeniable
benefits in terms of portability and isolation, the
assumption that it is a prerequisite for modern
DevSecOps is not supported by empirical evidence.
Instead, the analysis reveals that architectural
intentionality and governance discipline are more
decisive factors than deployment substrate.

One of the key interpretive insights concerns the
tension between stability and modernization.
Enterprises operating mixed Java versions often do so
not out of neglect but as a rational response to risk
and cost considerations (Gupta & Saxena, 2020). The
gradual adoption of newer Java features, guided by
empirical understanding of language and runtime
evolution, allows organizations to balance innovation
with reliability (Venkat & Saito, 2022). CI/CD pipelines

https://theusajournals.com/index.php/ajast

American Journal of Applied Science and Technology (ISSN: 2771-2745)

serve as the mediating infrastructure through which
this balance is negotiated.

Modularity emerges as both a technical and
organizational construct. While JPMS provides formal
mechanisms for encapsulation, its successful
adoption requires cultural shifts in how teams reason
about dependencies and ownership (Deligiannis et
al., 2022). Pipelines that enforce modular boundaries
through automated checks effectively institutionalize
these shifts, embedding architectural discipline into
everyday workflows.

The discussion also highlights the strategic
importance of dependency governance. Transitive
risks challenge traditional notions of control, as
vulnerabilities may originate far from the code
directly maintained by a team (Shah et al., 2020).
Policy-as-code frameworks offer a compelling
response by translating organizational risk tolerance
into executable rules that operate consistently across
pipelines (Open Policy Agent, 2023). This alignment
between policy and automation is particularly
valuable in regulated environments subject to
standards such as PCI DSS (PCl Security Standards
Council, 2022).

Limitations of the study include its reliance on
secondary sources and theoretical synthesis rather
than primary empirical data collection. While this
approach enables broad integration of existing
knowledge, it may overlook context-specific nuances
present in individual organizations. Future research
could complement this work with longitudinal case
studies examining real-world pipeline
transformations.

CONCLUSION

This research demonstrates that enterprise-grade
CI/CD pipelines for mixed Java version environments
can achieve high levels of security, reliability, and
adaptability without relying on containerization. By
synthesizing insights from Java platform evolution,
modularity research, dependency risk analysis, and
DevSecOps frameworks, the study provides a
comprehensive theoretical foundation for pipeline
design in legacy-conscious enterprises. Jenkins-based
automation, when combined with disciplined version
management, modular enforcement, and integrated
security controls, remains a viable and strategically
sound approach. As enterprises continue to navigate
the complexities of modernization, the principles

American Journal of Applied Science and Technology

286

articulated here offer a pragmatic pathway for
aligning technical evolution with organizational

realities.

REFERENCES

1. Aqua Security. (2023). Trivy open source
vulnerability scanner.

2. Chen, L., & Thakkar, M. (2021). Garbage
collection optimization in large-scale Java
applications. Proceedings of the IEEE
International Conference on Software
Maintenance and Evolution.

3. Deligiannis, I, et al. (2021). Challenges in

modularizing legacy Java systems: An empirical
study. Empirical Software Engineering, 26(2), 25.

4. Deligiannis, N., Smaragdakis, Y., & Chatrchyan, S.
(2019). Migrating to Java 9 modules: Lessons
from the trenches. Proceedings of the ACM on
Programming Languages, 3(O0OPSLA), 1-25.

5. Deligiannis, N., Spinellis, D., & Gousios, G. (2022).
Analyzing modularity in Java projects after JPMS
adoption. Empirical Software Engineering
Journal, 27(1), 1-29.

6. Gupta, M., & Saxena, A. (2020). An empirical
study of Java LTS versions in enterprise software
systems. Journal of Software Engineering and
Applications, 13(8), 325-337.

7. Jenkins. (2023). Pipeline syntax and tools. Jenkins
documentation.

8. lJenkins Project. (2024). Jenkins documentation:
Pipeline and plugin ecosystem.

9. Kathi, S. R. (2025). Enterprise-grade CI/CD
pipelines for mixed Java version environments
using Jenkins in non-containerized environments.
Journal of Engineering Research and Sciences,
4(9), 12-21. https://doi.org/10.55708/is0409002

10. Malhotra, S. (2021). Dependency management
for Java frameworks: The case of Spring and
Jersey. International Journal of Software
Engineering & Applications, 12(4), 45-57.

11. Mehta, N. (2022). DevSecOps: A leader’s guide to
producing secure software without
compromising flow, feedback, and continuous

improvement. IT Revolution.

https://theusajournals.com/index.php/ajast

https://doi.org/10.55708/js0409002

American Journal of Applied Science and Technology (ISSN: 2771-2745)
12,

13.

14.
15.

16.

17.

18.

19.

20.

21.

22.

23.

24,

25.

26.

27.

28.

OpenlDK. (2021). JEP index.

Open Policy Agent. (2023). Policy as code for
secure CI/CD.

Oracle. (2021). Java SE support roadmap.
Oracle. (2023). Java SE support roadmap.

Oracle Corporation. (2021). CLDR in JDK 9 and
later (JEP 252).

Oracle Corporation. (2022). Java
microbenchmark harness.

OWASP Foundation. (2023). OWASP
dependency-check.

OWASP Foundation. (2023). OWASP ZAP project.

PCI Security Standards Council. (2022). Payment
card industry data security standard v4.0.

Shah, A., et al. (2020). Risks in transitive
dependency upgrades in Java projects.
Proceedings of the IEEE International Conference
on Software Maintenance and Evolution, 27-36.

Shah, P., Reddy, A., & Ma, J. (2022). Risk
propagation in Java dependency trees: A
transitive analysis approach. Software: Practice
and Experience, 52(9), 1754-1772.

SonarSource. (2023). Static analysis for Java
applications.

SonarSource. (2024). SonarQube documentation.
Snyk Ltd. (2023). State of Java security report.

Tomlinson, B. (2021). CI/CD without containers:
Lessons from legacy environments. Proceedings
of the DevOps Enterprise Summit.

Venkat, G., & Saito, T. (2022). Modern Java
language features: From Java 9 to Java 17. Java
Magazine, Oracle.

Splunk Inc. (2023). Security information and
event management best practices.

American Journal of Applied Science and Technology

https://theusajournals.com/index.php/ajast

