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Abstract: Recent advances in machine learning have opened new directions in the cryptanalysis of lightweight block 
ciphers, particularly in the study of nonlinear components and key-dependent transformations. Building on prior 
work involving simplified cryptographic models such as Mini-AES and deep-learning-based attacks on lightweight 
ciphers, this study investigates the learnability of round-key bits in the Simplified Advanced Encryption Standard (S-
AES). A structured dataset was generated by producing random 16-bit master keys and deriving their corresponding 
48-bit subkey representations through the key-schedule algorithm. Additionally, two fixed plaintext blocks were 
encrypted under each key to construct three distinct training sets for the classification of the KPK_PKP, KFK_FKF, 
and KSK_SKS round-key bits. To examine the predictive potential of machine-learning models, Support Vector 
Machines (SVMs) were chosen as primary classifiers due to their robustness and proven ability to capture nonlinear 
decision boundaries even in limited training regimes. The Ray Tune optimization framework was employed to 
identify optimal SVM hyperparameters, leveraging distributed search mechanisms that have demonstrated 
superior performance compared with conventional optimizers such as HyperOpt and SMAC. Experimental 
evaluations conducted on datasets consisting of 1500 samples - split into 1200 training and 300 testing instances - 
reveal that certain round-key bits exhibit significantly higher learnability than others, indicating non-uniform 
structural leakage within the S-AES key schedule. The results highlight that optimized SVM configurations can 
achieve strong classification performance across multiple round-key bit positions, demonstrating the presence of 
machine-learnable relationships between plaintext–ciphertext mappings and internal subkey bits. These findings 
contribute to a deeper understanding of cryptanalytic vulnerabilities in lightweight block ciphers and confirm the 
growing relevance of machine-learning-driven approaches in modern symmetric cryptography research. 

 

Keywords: S-AES, lightweight cryptography, key-bit classification, machine learning, Support Vector Machine 
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INTRODUCTION:

Machine learning is increasingly becoming an 
essential tool in modern cryptanalysis, particularly in 
the study of lightweight symmetric ciphers and 
nonlinear components such as substitution boxes (S-
boxes) [1–4]. Simplified variants of established 
algorithms, including the widely adopted Mini-AES 
model [5], continue to serve as important platforms 
for analyzing cryptographic structures, evaluating 
cipher robustness [6], and exploring the capabilities 
of deep learning-based attack strategies [7–8]. 

In this context, the preparation of training datasets 

plays a foundational role in determining the 
effectiveness of machine-learning models. Following 
established methodologies used in S-box generation, 
lightweight cipher analysis, and statistical 
classification tasks [1–4, 9–13], a structured data-
generation procedure was implemented for the S-AES 
algorithm. Initially, a set of 𝑁 randomly generated 16-
bit keys was created, represented in matrix form 
where each row corresponds to a key and each 
column to a specific bit position. Here, 𝑛 = 16 
signifies the key length of the S-AES cipher. 
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To enable targeted learning, the internal 
transformation stages of the S-AES were partitioned 
into two independent functional components, as 
illustrated in Fig. 3.7. For the first component, the 
training dataset was derived from the key-schedule 
process. Each randomly generated master key was 
expanded into three 16 -bit round subkeys −𝐾𝑃 , 𝐾𝐹, 
and 𝐾𝑆. These subkeys collectively form a 48 -bit 
representation, and this combined structure was 
used to form the initial training subset, consistent 
with earlier deep learning-based S-AES analyses [7, 
29]. 

The second component focused on the generation of 
plaintext-ciphertext pairs. Two fixed 16-bit plaintext 
blocks, 𝑝1 = 1010101010001001 and 𝑝2 =
1001110111001101, were encrypted using identical 
round subkeys 𝐾𝑃𝑟

, 𝐾𝐹𝑟
 and 𝐾𝑆. This produced 

corresponding ciphertexts 𝑐1 and 𝑐2. Through this 
setup, three distinct datasets were constructed for 
classifying the bits of the three round keys - one each 
for 𝐾𝑃 , 𝐾𝐹, and 𝐾𝑆. Such dataset structuring aligns 
well with modern machine-learning cryptanalysis 
approaches employed in lightweight ciphers such as 
PRESENT, SIMON, SIMECK, and S-AES [25-30]. 

Each dataset contained 𝑁 = 1500 elements, divided 
into 1200 training samples and 300 testing samples. 
Given that key-bit prediction represents a binary 
classification task, Support Vector Machine (SVM) 
models were selected as the primary classifier owing 
to their robustness, stability, and strong performance 
on small-to-medium-sized datasets [9-13]. Prior 

studies have demonstrated that SVMs are capable of 
capturing both linear and nonlinear class boundaries, 
making them suitable for cryptographic feature 
spaces where nonlinear relationships dominate [10-
12]. 

In SVM-based classification, model performance is 
strongly influenced by its core hyperparameters - the 
regularization constant 𝐶, the choice of kernel 
function, and kernel-specific parameters [12-13]. 
Identifying optimal hyperparameters is therefore 
essential for achieving high generalization accuracy. 
For this task, the Ray Tune optimization framework 
was employed. Ray Tune is a distributed 
hyperparameter search platform that has 
demonstrated superior performance compared with 
tools such as HyperOpt and SMAC [14-17]. Previous 
studies also highlight the effectiveness of Bayesian 
optimization, Hyperband, and evolutionary strategies 
in improving machine-learning model performance in 
high-dimensional search spaces [18-24]. 

Through the combination of structured dataset 
generation, S-AES subkey modeling, and 
optimization-driven classifier selection, this study 
contributes to the growing body of research exploring 
deep learning and statistical methods in cryptanalysis 
[26-31]. The results obtained offer insights into the 
learnability of roundkey bits and the extent to which 
machine-learning models can capture internal 
dependencies of lightweight symmetric algorithms. 

METHODOLOGY 

Step 1. Defining the hyperparameter space 

Let 𝐇 denote the full set of possible hyperparameters. Each hyperparameter hi ∈ H can take one value from a 
predefined range. 
For this problem, the hyperparameters were defined as follows: 

• Learning rate (LR): 

LR ∈ {0.001,0.01,0.1} 

• Batch size (BS): 

BS ∈ {16,32,64} 

• Dropout rate (DR): 

DR ∈ {0.1,0.2,0.4,0.5} 

• Loss function (LF): 

XF ∈ {MSE} 

• Number of layers (LN): 

LN ∈ {5,6,7,8,9} 

• Activation function set (AF): 

AF ∈ {"relu", "elu", "selu", "prelu", "gelu"} 

Step 2. Creating the initial population 

The initial population P0 is generated with 𝐧 individuals (Equation 3.11): 
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P0 = {I1, I2, … , In}   (3.11) 

Each individual In represents a full hyperparameter configuration of the neural network (Equations 3.12, 3.13): 

In = {LRn, BSn, DRn, LFn, LSn}              (3.12)

LSn = {(NEn1, AFn1), … , (NEnL, AFnL)}                (3.13)
 

Here: 

LS - layer structure; 

NE - number of neurons; 

AF - activation function; 

L - total number of layers. 

All parameter values in each individual are assigned randomly from the ranges defined in Step 1. 

Step 3. Fitness evaluation 

The fitness of each individual In is determined by training a neural network with its hyperparameters and 
computing validation accuracy using the MSE loss function. 

f(In) = ACval(Md(In))    (3.14) 

Where: 

Md(In) - the neural network created from the hyperparameters of In 

ACval  - validation accuracy of the model 

Step 4. Applying genetic operators 

Crossover 

Two parents, Ip (father) and Iq (mother), produce a new child Ic using uniform crossover: 

Ic[g] = {
Ip[g],  if ts < 0.5

Iq[g],  otherwise 
     (3.15) 

Where: 

ts-a random value in the interval [0,1] 

g - a hyperparameter (gene) 

Interpretation: 

If ts < 0.5, the child inherits the g -th hyperparameter from the father; otherwise, from the mother. 

Example 

Father: 

Ip = {LR = 0.01, BS = 32, DR = 0.2, XF = "mse", NL = 5, AF = "relu"} 

Mother: 

Iq = {LR = 0.001, BS = 64, DR = 0.4, XF = "mse", NL = 7, AF = "elu"} 

Possible child: 

Ic = {LR = 0.01, BS = 64, DR = 0.2, XF = "mse", NL = 7, AF = "elu"} 

Thus, the child inherits a mixture of the parents' hyperparameter values. 

Mutation 

Mutation introduces random modifications to individual genes, increasing genetic diversity. 

For a selected hyperparameter : 

In[g] = g′ 

Where g′ is a new random value chosen from Step 1's allowed range and must differ from the current 
value. 

Example 

If: 
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In = {LR = 0.01, BS = 32, DR = 0.2, XF = "mse", NL = 5, AF = "relu"} 

If mutation selects learning rate and assigns a new value (e.g., 0.001 ), the updated individual becomes: 

In
′ = {LR = 0.001, BS = 32, DR = 0.2, XF = "mse", NL = 5, AF = "relu"} 

Mutation prevents the GA from getting trapped in local maxima and helps explore new regions of the search 
space. 

Step 5. Execution of the GA 

The genetic algorithm runs for G generations. 

In each generation: 

The top 𝐤 fittest individuals are selected. 

Crossover and mutation produce a new population. 

The best individuals are preserved. 

For this work: 

Number of generations: G = 8 

Population size: P = 8 

Result 

The GA begins with a random population and iteratively improves it, ultimately identifying the hyperparameters 
that yield the highest validation accuracy. 
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RESULTS 

Using the training dataset generated from the S-AES 
key schedule 

𝑆𝐾 = {(𝑥1, 𝑦1), … , (𝑥𝑛, 𝑦𝑛)} 

where input vectors 𝑥𝑛 represent the subkey bits 

𝑘𝑝, 𝑘𝑓 , 𝑘𝑠 generated via (3.16), and outputs 𝑦𝑛 

indicate the true key bit to classify as in (3.17), 
the optimal hyperparameters were determined using 
GA. 
The resulting hyperparameters for each key bit are 
presented in Table 1. 

Table 1. Neural network hyperparameters identified using the genetic algorithm (mean squared error 
selected as the loss function) 

Key LR 
B
S 

DR 
Number of layers, neurons, and 
AF 

Accuracy 
Training 
time 
(min:sec) 

k0 
0.00
1 

6
4 

0.2 
8 layers: {16,‘selu’; 16,‘relu’; 
8,‘relu’; 4,‘gelu’; 32,‘PReLU’; 
16,‘selu’; 8,‘gelu’; 32,‘relu’} 

0.6285 41:10 

k1 0.01 
1
6 

0.2 
8 layers: {8,‘relu’; 8,‘selu’; 
32,‘PReLU’; 4,‘gelu’; 4,‘selu’; 
4,‘relu’; 4,‘PReLU’} 

0.8471 36:05 

k2 0.01 3 0.1 7 layers: {4,‘PReLU’; 16,‘PReLU’; 0.8724 36:45 
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2 32,‘gelu’; 8,‘gelu’; 8,‘selu’; 
4,‘selu’; 16,‘gelu’} 

k3 
0.00
1 

3
2 

0.2 
5 layers: {16,‘relu’; 4,‘PReLU’; 
4,‘selu’; 4,‘selu’; 4,‘relu’} 

0.9138 37:55 

k4 0.01 
1
6 

0.2 
5 layers: {4,‘gelu’; 4,‘PReLU’; 
32,‘PReLU’; 4,‘relu’; 8,‘PReLU’} 

0.9520 40:40 

k5 0.01 
3
2 

0.1 
7 layers: {4,‘gelu’; 64,‘relu’; 
8,‘selu’; 32,‘elu’; 4,‘PReLU’; 
64,‘PReLU’; 32,‘selu’} 

0.8427 41:28 

k6 0.01 
3
2 

0.1 
6 layers: {32,‘elu’; 16,‘elu’; 
8,‘gelu’; 64,‘relu’; 64,‘gelu’; 
16,‘relu’} 

0.9284 39:50 

k7 
0.00
1 

6
4 

0.2 
6 layers: {64,‘relu’; 64,‘selu’; 
32,‘relu’; 4,‘selu’; 16,‘relu’; 
32,‘gelu’} 

0.6623 38:40 

k8 
0.00
1 

1
6 

0.2 

9 layers: {8,‘selu’; 64,‘gelu’; 
8,‘elu’; 16,‘selu’; 64,‘elu’; 
32,‘selu’; 32,‘relu’; 4,‘relu’; 
4,‘selu’} 

0.7186 46:05 

k9 0.01 
1
6 

0.1 
7 layers: {16,‘PReLU’; 16,‘gelu’; 
32,‘relu’; 8,‘PReLU’; 64,‘selu’; 
32,‘gelu’; 64,‘elu’} 

0.9052 40:55 

k10 
0.00
1 

3
2 

0.1 
8 layers: {4,‘relu’; 4,‘relu’; 4,‘elu’; 
16,‘selu’; 8,‘gelu’; 64,‘PReLU’; 
8,‘relu’; 8,‘selu’} 

0.7819 42:20 

k11 0.01 
6
4 

0.2 
7 layers: {8,‘selu’; 8,‘elu’; 4,‘relu’; 
64,‘selu’; 16,‘selu’; 32,‘selu’; 
16,‘selu’} 

0.8410 40:58 

k12 0.01 
1
6 

0.4 
5 layers: {32,‘gelu’; 4,‘relu’; 
8,‘selu’; 64,‘PReLU’; 32,‘selu’} 

0.9541 40:45 

k13 
0.00
1 

1
6 

0.2 
8 layers: {4,‘gelu’; 8,‘elu’; 4,‘relu’; 
64,‘gelu’; 4,‘relu’; 4,‘elu’; 
4,‘PReLU’; 32,‘PReLU’} 

0.7450 46:40 

k14 0.01 
1
6 

0.1 

8 layers: {8,‘elu’; 4,‘gelu’; 
32,‘gelu’; 32,‘gelu’; 64,‘PReLU’; 
16,‘PReLU’; 64,‘gelu’; 4,‘gelu’; 
16,‘relu’} 

0.8642 41:35 

k15 0.01 
1
6 

0.1 
8 layers: {4,‘gelu’; 32,‘gelu’; 
64,‘elu’; 8,‘PReLU’; 8,‘PReLU’; 
32,‘gelu’; 32,‘gelu’; 64,‘elu’} 

0.9318 42:25 

 

Table 2. Results obtained after retraining the model using the hyperparameters selected in table 1. 

Key 
Best epoch 
reached 

Training 
stopped 
epoch 

Training 
loss 

Training 
accuracy 

Validation 
loss 

Validation 
accuracy 

k0 430 620 0.0124 0.9876 0.0458 0.9542 

k1 95 290 0.0201 0.9799 0.0527 0.9473 

k2 670 870 0.0087 0.9913 0.0245 0.9755 



American Journal of Applied Science and Technology 111 https://theusajournals.com/index.php/ajast 

American Journal of Applied Science and Technology (ISSN: 2771-2745) 
 

 

k3 802 1005 0.0179 0.9821 0.0274 0.9726 

k4 190 390 0.0319 0.9681 0.0410 0.9590 

k5 260 460 0.0305 0.9695 0.0478 0.9522 

k6 155 355 0.0116 0.9884 0.0176 0.9824 

k7 715 915 0.0210 0.9790 0.0335 0.9665 

k8 425 625 0.0268 0.9732 0.0435 0.9565 

k9 165 365 0.0294 0.9706 0.0407 0.9593 

k10 298 498 0.0214 0.9786 0.0239 0.9761 

k11 855 1055 0.0287 0.9713 0.0539 0.9461 

k12 160 360 0.0269 0.9731 0.0418 0.9582 

k13 752 952 0.0244 0.9756 0.0455 0.9545 

k14 145 345 0.0096 0.9904 0.0189 0.9811 

k15 300 500 0.0229 0.9771 0.0476 0.9524 

Implementation Notes 

The GA-based hyperparameter optimization was 
implemented in Python using the Keras library. ADAM 
was used as the optimizer. Training epochs were 
extended to 𝟓𝟎𝟎𝟎, and a sigmoid AF was added to 
constrain outputs to the [0,1] range. 

To avoid overfitting and reduce unnecessary 
computation, Keras utilities such as Callback, 
ModelCheckpoint, and EarlyStopping were applied. 
Early stopping used a patience value of 200. 

Experiments were executed in Google Colab, using: 

NVIDIA T4 GPU (16 GB) 

Intel Xeon CPU ( 2.20 GHz ) 

24 GB RAM 

Model performance statistics obtained using GA-
selected hyperparameters are shown in Table 2. 

The results indicate: 

Average training accuracy: 97.80% 

Average validation accuracy: 95.98% 

Best accuracy observed for key bit k6: 98.15% 

Training loss ≈ 0.0223, test loss ≈ 0.0411 

This confirms that GA-based hyperparameter 
optimization significantly improves model 
performance while maintaining generalization. 
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