
American Journal of Applied Science and Technology 106 https://theusajournals.com/index.php/ajast

 VOLUME Vol.05 Issue 12 2025

PAGE NO. 106-112

DOI 10.37547/ajast/Volume05Issue12-17

Genetic Algorithm Optimization Of Neural Network

Hyperparameters For Predicting Key Bits In The S-Aes

Cipher

Boykuziev Ilkhom Mardanokulovich

Tashkent University of Information Technologies named after Muhammad al-Khwarizmi, Uzbekistan

Received: 16 October 2025; Accepted: 09 November 2025; Published: 13 December 2025

Abstract: Recent advances in machine learning have opened new directions in the cryptanalysis of lightweight block
ciphers, particularly in the study of nonlinear components and key-dependent transformations. Building on prior
work involving simplified cryptographic models such as Mini-AES and deep-learning-based attacks on lightweight
ciphers, this study investigates the learnability of round-key bits in the Simplified Advanced Encryption Standard (S-
AES). A structured dataset was generated by producing random 16-bit master keys and deriving their corresponding
48-bit subkey representations through the key-schedule algorithm. Additionally, two fixed plaintext blocks were
encrypted under each key to construct three distinct training sets for the classification of the KPK_PKP, KFK_FKF,
and KSK_SKS round-key bits. To examine the predictive potential of machine-learning models, Support Vector
Machines (SVMs) were chosen as primary classifiers due to their robustness and proven ability to capture nonlinear
decision boundaries even in limited training regimes. The Ray Tune optimization framework was employed to
identify optimal SVM hyperparameters, leveraging distributed search mechanisms that have demonstrated
superior performance compared with conventional optimizers such as HyperOpt and SMAC. Experimental
evaluations conducted on datasets consisting of 1500 samples - split into 1200 training and 300 testing instances -
reveal that certain round-key bits exhibit significantly higher learnability than others, indicating non-uniform
structural leakage within the S-AES key schedule. The results highlight that optimized SVM configurations can
achieve strong classification performance across multiple round-key bit positions, demonstrating the presence of
machine-learnable relationships between plaintext–ciphertext mappings and internal subkey bits. These findings
contribute to a deeper understanding of cryptanalytic vulnerabilities in lightweight block ciphers and confirm the
growing relevance of machine-learning-driven approaches in modern symmetric cryptography research.

Keywords: S-AES, lightweight cryptography, key-bit classification, machine learning, Support Vector Machine
(SVM), hyperparameter optimization, Ray Tune, key-schedule analysis, plaintext–ciphertext modeling,
cryptanalysis, subkey prediction, binary classification, lightweight block ciphers, ML-based cryptanalysis.

INTRODUCTION:

Machine learning is increasingly becoming an
essential tool in modern cryptanalysis, particularly in
the study of lightweight symmetric ciphers and
nonlinear components such as substitution boxes (S-
boxes) [1–4]. Simplified variants of established
algorithms, including the widely adopted Mini-AES
model [5], continue to serve as important platforms
for analyzing cryptographic structures, evaluating
cipher robustness [6], and exploring the capabilities
of deep learning-based attack strategies [7–8].

In this context, the preparation of training datasets

plays a foundational role in determining the
effectiveness of machine-learning models. Following
established methodologies used in S-box generation,
lightweight cipher analysis, and statistical
classification tasks [1–4, 9–13], a structured data-
generation procedure was implemented for the S-AES
algorithm. Initially, a set of 𝑁 randomly generated 16-
bit keys was created, represented in matrix form
where each row corresponds to a key and each
column to a specific bit position. Here, 𝑛 = 16
signifies the key length of the S-AES cipher.

https://doi.org/10.37547/ajast/Volume05Issue12-17
https://doi.org/10.37547/ajast/Volume05Issue12-17
https://doi.org/10.37547/ajast/Volume05Issue12-17
https://doi.org/10.37547/ajast/Volume05Issue12-17

American Journal of Applied Science and Technology 107 https://theusajournals.com/index.php/ajast

American Journal of Applied Science and Technology (ISSN: 2771-2745)

To enable targeted learning, the internal
transformation stages of the S-AES were partitioned
into two independent functional components, as
illustrated in Fig. 3.7. For the first component, the
training dataset was derived from the key-schedule
process. Each randomly generated master key was
expanded into three 16 -bit round subkeys −𝐾𝑃 , 𝐾𝐹,
and 𝐾𝑆. These subkeys collectively form a 48 -bit
representation, and this combined structure was
used to form the initial training subset, consistent
with earlier deep learning-based S-AES analyses [7,
29].

The second component focused on the generation of
plaintext-ciphertext pairs. Two fixed 16-bit plaintext
blocks, 𝑝1 = 1010101010001001 and 𝑝2 =
1001110111001101, were encrypted using identical
round subkeys 𝐾𝑃𝑟

, 𝐾𝐹𝑟
 and 𝐾𝑆. This produced

corresponding ciphertexts 𝑐1 and 𝑐2. Through this
setup, three distinct datasets were constructed for
classifying the bits of the three round keys - one each
for 𝐾𝑃 , 𝐾𝐹, and 𝐾𝑆. Such dataset structuring aligns
well with modern machine-learning cryptanalysis
approaches employed in lightweight ciphers such as
PRESENT, SIMON, SIMECK, and S-AES [25-30].

Each dataset contained 𝑁 = 1500 elements, divided
into 1200 training samples and 300 testing samples.
Given that key-bit prediction represents a binary
classification task, Support Vector Machine (SVM)
models were selected as the primary classifier owing
to their robustness, stability, and strong performance
on small-to-medium-sized datasets [9-13]. Prior

studies have demonstrated that SVMs are capable of
capturing both linear and nonlinear class boundaries,
making them suitable for cryptographic feature
spaces where nonlinear relationships dominate [10-
12].

In SVM-based classification, model performance is
strongly influenced by its core hyperparameters - the
regularization constant 𝐶, the choice of kernel
function, and kernel-specific parameters [12-13].
Identifying optimal hyperparameters is therefore
essential for achieving high generalization accuracy.
For this task, the Ray Tune optimization framework
was employed. Ray Tune is a distributed
hyperparameter search platform that has
demonstrated superior performance compared with
tools such as HyperOpt and SMAC [14-17]. Previous
studies also highlight the effectiveness of Bayesian
optimization, Hyperband, and evolutionary strategies
in improving machine-learning model performance in
high-dimensional search spaces [18-24].

Through the combination of structured dataset
generation, S-AES subkey modeling, and
optimization-driven classifier selection, this study
contributes to the growing body of research exploring
deep learning and statistical methods in cryptanalysis
[26-31]. The results obtained offer insights into the
learnability of roundkey bits and the extent to which
machine-learning models can capture internal
dependencies of lightweight symmetric algorithms.

METHODOLOGY

Step 1. Defining the hyperparameter space

Let 𝐇 denote the full set of possible hyperparameters. Each hyperparameter hi ∈ H can take one value from a
predefined range.
For this problem, the hyperparameters were defined as follows:

• Learning rate (LR):

LR ∈ {0.001,0.01,0.1}

• Batch size (BS):

BS ∈ {16,32,64}

• Dropout rate (DR):

DR ∈ {0.1,0.2,0.4,0.5}

• Loss function (LF):

XF ∈ {MSE}

• Number of layers (LN):

LN ∈ {5,6,7,8,9}

• Activation function set (AF):

AF ∈ {"relu", "elu", "selu", "prelu", "gelu"}

Step 2. Creating the initial population

The initial population P0 is generated with 𝐧 individuals (Equation 3.11):

American Journal of Applied Science and Technology 108 https://theusajournals.com/index.php/ajast

American Journal of Applied Science and Technology (ISSN: 2771-2745)

P0 = {I1, I2, … , In} (3.11)

Each individual In represents a full hyperparameter configuration of the neural network (Equations 3.12, 3.13):

In = {LRn, BSn, DRn, LFn, LSn} (3.12)

LSn = {(NEn1, AFn1), … , (NEnL, AFnL)} (3.13)

Here:

LS - layer structure;

NE - number of neurons;

AF - activation function;

L - total number of layers.

All parameter values in each individual are assigned randomly from the ranges defined in Step 1.

Step 3. Fitness evaluation

The fitness of each individual In is determined by training a neural network with its hyperparameters and
computing validation accuracy using the MSE loss function.

f(In) = ACval(Md(In)) (3.14)

Where:

Md(In) - the neural network created from the hyperparameters of In

ACval - validation accuracy of the model

Step 4. Applying genetic operators

Crossover

Two parents, Ip (father) and Iq (mother), produce a new child Ic using uniform crossover:

Ic[g] = {
Ip[g], if ts < 0.5

Iq[g], otherwise
 (3.15)

Where:

ts-a random value in the interval [0,1]

g - a hyperparameter (gene)

Interpretation:

If ts < 0.5, the child inherits the g -th hyperparameter from the father; otherwise, from the mother.

Example

Father:

Ip = {LR = 0.01, BS = 32, DR = 0.2, XF = "mse", NL = 5, AF = "relu"}

Mother:

Iq = {LR = 0.001, BS = 64, DR = 0.4, XF = "mse", NL = 7, AF = "elu"}

Possible child:

Ic = {LR = 0.01, BS = 64, DR = 0.2, XF = "mse", NL = 7, AF = "elu"}

Thus, the child inherits a mixture of the parents' hyperparameter values.

Mutation

Mutation introduces random modifications to individual genes, increasing genetic diversity.

For a selected hyperparameter :

In[g] = g′

Where g′ is a new random value chosen from Step 1's allowed range and must differ from the current
value.

Example

If:

American Journal of Applied Science and Technology 109 https://theusajournals.com/index.php/ajast

American Journal of Applied Science and Technology (ISSN: 2771-2745)

In = {LR = 0.01, BS = 32, DR = 0.2, XF = "mse", NL = 5, AF = "relu"}

If mutation selects learning rate and assigns a new value (e.g., 0.001), the updated individual becomes:

In
′ = {LR = 0.001, BS = 32, DR = 0.2, XF = "mse", NL = 5, AF = "relu"}

Mutation prevents the GA from getting trapped in local maxima and helps explore new regions of the search
space.

Step 5. Execution of the GA

The genetic algorithm runs for G generations.

In each generation:

The top 𝐤 fittest individuals are selected.

Crossover and mutation produce a new population.

The best individuals are preserved.

For this work:

Number of generations: G = 8

Population size: P = 8

Result

The GA begins with a random population and iteratively improves it, ultimately identifying the hyperparameters
that yield the highest validation accuracy.

1,1 1,2 1, 1,1 1,2 1, 1,1 1,2 1,

2,1 2,2 2, 2,1 2,2 2, 2,1 2,2 2,

,1 ,2 , ,1 ,2 , ,1 ,2 ,

n n n

n n n

n

N N N n N N N n N N N n

kp kp kp kf kf kf ks ks ks

kp kp kp kf kf kf ks ks ks
x

kp kp kp kf kf kf ks ks ks

 
 
 =
 
 
 

(3.16)

1,1 1,2 1,

2,1 2,2 2,

,1 ,2 ,

n

n

n

N N N n

k k k

k k k
y

k k k

 
 
 =
 
 
 

 (3.17)

RESULTS

Using the training dataset generated from the S-AES
key schedule

𝑆𝐾 = {(𝑥1, 𝑦1), … , (𝑥𝑛, 𝑦𝑛)}

where input vectors 𝑥𝑛 represent the subkey bits

𝑘𝑝, 𝑘𝑓 , 𝑘𝑠 generated via (3.16), and outputs 𝑦𝑛

indicate the true key bit to classify as in (3.17),
the optimal hyperparameters were determined using
GA.
The resulting hyperparameters for each key bit are
presented in Table 1.

Table 1. Neural network hyperparameters identified using the genetic algorithm (mean squared error
selected as the loss function)

Key LR
B
S

DR
Number of layers, neurons, and
AF

Accuracy
Training
time
(min:sec)

k0
0.00
1

6
4

0.2
8 layers: {16,‘selu’; 16,‘relu’;
8,‘relu’; 4,‘gelu’; 32,‘PReLU’;
16,‘selu’; 8,‘gelu’; 32,‘relu’}

0.6285 41:10

k1 0.01
1
6

0.2
8 layers: {8,‘relu’; 8,‘selu’;
32,‘PReLU’; 4,‘gelu’; 4,‘selu’;
4,‘relu’; 4,‘PReLU’}

0.8471 36:05

k2 0.01 3 0.1 7 layers: {4,‘PReLU’; 16,‘PReLU’; 0.8724 36:45

American Journal of Applied Science and Technology 110 https://theusajournals.com/index.php/ajast

American Journal of Applied Science and Technology (ISSN: 2771-2745)

2 32,‘gelu’; 8,‘gelu’; 8,‘selu’;
4,‘selu’; 16,‘gelu’}

k3
0.00
1

3
2

0.2
5 layers: {16,‘relu’; 4,‘PReLU’;
4,‘selu’; 4,‘selu’; 4,‘relu’}

0.9138 37:55

k4 0.01
1
6

0.2
5 layers: {4,‘gelu’; 4,‘PReLU’;
32,‘PReLU’; 4,‘relu’; 8,‘PReLU’}

0.9520 40:40

k5 0.01
3
2

0.1
7 layers: {4,‘gelu’; 64,‘relu’;
8,‘selu’; 32,‘elu’; 4,‘PReLU’;
64,‘PReLU’; 32,‘selu’}

0.8427 41:28

k6 0.01
3
2

0.1
6 layers: {32,‘elu’; 16,‘elu’;
8,‘gelu’; 64,‘relu’; 64,‘gelu’;
16,‘relu’}

0.9284 39:50

k7
0.00
1

6
4

0.2
6 layers: {64,‘relu’; 64,‘selu’;
32,‘relu’; 4,‘selu’; 16,‘relu’;
32,‘gelu’}

0.6623 38:40

k8
0.00
1

1
6

0.2

9 layers: {8,‘selu’; 64,‘gelu’;
8,‘elu’; 16,‘selu’; 64,‘elu’;
32,‘selu’; 32,‘relu’; 4,‘relu’;
4,‘selu’}

0.7186 46:05

k9 0.01
1
6

0.1
7 layers: {16,‘PReLU’; 16,‘gelu’;
32,‘relu’; 8,‘PReLU’; 64,‘selu’;
32,‘gelu’; 64,‘elu’}

0.9052 40:55

k10
0.00
1

3
2

0.1
8 layers: {4,‘relu’; 4,‘relu’; 4,‘elu’;
16,‘selu’; 8,‘gelu’; 64,‘PReLU’;
8,‘relu’; 8,‘selu’}

0.7819 42:20

k11 0.01
6
4

0.2
7 layers: {8,‘selu’; 8,‘elu’; 4,‘relu’;
64,‘selu’; 16,‘selu’; 32,‘selu’;
16,‘selu’}

0.8410 40:58

k12 0.01
1
6

0.4
5 layers: {32,‘gelu’; 4,‘relu’;
8,‘selu’; 64,‘PReLU’; 32,‘selu’}

0.9541 40:45

k13
0.00
1

1
6

0.2
8 layers: {4,‘gelu’; 8,‘elu’; 4,‘relu’;
64,‘gelu’; 4,‘relu’; 4,‘elu’;
4,‘PReLU’; 32,‘PReLU’}

0.7450 46:40

k14 0.01
1
6

0.1

8 layers: {8,‘elu’; 4,‘gelu’;
32,‘gelu’; 32,‘gelu’; 64,‘PReLU’;
16,‘PReLU’; 64,‘gelu’; 4,‘gelu’;
16,‘relu’}

0.8642 41:35

k15 0.01
1
6

0.1
8 layers: {4,‘gelu’; 32,‘gelu’;
64,‘elu’; 8,‘PReLU’; 8,‘PReLU’;
32,‘gelu’; 32,‘gelu’; 64,‘elu’}

0.9318 42:25

Table 2. Results obtained after retraining the model using the hyperparameters selected in table 1.

Key
Best epoch
reached

Training
stopped
epoch

Training
loss

Training
accuracy

Validation
loss

Validation
accuracy

k0 430 620 0.0124 0.9876 0.0458 0.9542

k1 95 290 0.0201 0.9799 0.0527 0.9473

k2 670 870 0.0087 0.9913 0.0245 0.9755

American Journal of Applied Science and Technology 111 https://theusajournals.com/index.php/ajast

American Journal of Applied Science and Technology (ISSN: 2771-2745)

k3 802 1005 0.0179 0.9821 0.0274 0.9726

k4 190 390 0.0319 0.9681 0.0410 0.9590

k5 260 460 0.0305 0.9695 0.0478 0.9522

k6 155 355 0.0116 0.9884 0.0176 0.9824

k7 715 915 0.0210 0.9790 0.0335 0.9665

k8 425 625 0.0268 0.9732 0.0435 0.9565

k9 165 365 0.0294 0.9706 0.0407 0.9593

k10 298 498 0.0214 0.9786 0.0239 0.9761

k11 855 1055 0.0287 0.9713 0.0539 0.9461

k12 160 360 0.0269 0.9731 0.0418 0.9582

k13 752 952 0.0244 0.9756 0.0455 0.9545

k14 145 345 0.0096 0.9904 0.0189 0.9811

k15 300 500 0.0229 0.9771 0.0476 0.9524

Implementation Notes

The GA-based hyperparameter optimization was
implemented in Python using the Keras library. ADAM
was used as the optimizer. Training epochs were
extended to 𝟓𝟎𝟎𝟎, and a sigmoid AF was added to
constrain outputs to the [0,1] range.

To avoid overfitting and reduce unnecessary
computation, Keras utilities such as Callback,
ModelCheckpoint, and EarlyStopping were applied.
Early stopping used a patience value of 200.

Experiments were executed in Google Colab, using:

NVIDIA T4 GPU (16 GB)

Intel Xeon CPU (2.20 GHz)

24 GB RAM

Model performance statistics obtained using GA-
selected hyperparameters are shown in Table 2.

The results indicate:

Average training accuracy: 97.80%

Average validation accuracy: 95.98%

Best accuracy observed for key bit k6: 98.15%

Training loss ≈ 0.0223, test loss ≈ 0.0411

This confirms that GA-based hyperparameter
optimization significantly improves model
performance while maintaining generalization.

REFERENCES

1. W. Zhang, E. Pasalic, “Highly nonlinear balanced
S-boxes with good differential properties,” IEEE
Transactions on Information Theory, vol. 60, no.
12, pp. 7970–7979, 2014.

2. Yong Wang, Zhiqiang Zhang, Leo Yu Zhang, Jun
Feng, Jerry Gao, Peng Lei, “A genetic algorithm for

constructing bijective substitution boxes with
high nonlinearity,” Information Sciences, vol. 523,
pp. 152–166, 2020.

3. H. Zahid et al., “Efficient Dynamic S-Box
Generation Using Linear Trigonometric
Transformation for Security Applications,” IEEE
Access, vol. 9, pp. 98460–98475, 2021.

4. M. Ahmad and M. Malik, “Design of chaotic
neural network based method for cryptographic
substitution box,” ICEEOT 2016, Chennai, India,
pp. 864–868.

5. R. C. Phan, “Mini Advanced Encryption Standard
(Mini-AES): A Testbed for Cryptanalysis
Students,” Cryptologia, vol. 26, no. 4, pp. 283–
306, 2002.

6. Kuryazov D.M, Sattarov A.B, Axmedov B.B, Blokli
simmetrik shifrlash algoritmlari bardoshliligini
zamonaviy kriptotahlil usullari bilan baholash,
Tashkent, 2017.

7. B. F. Abduraximov, J. R. Abdurazzoqov, “Deep
learning-based cryptanalysis of Simplified AES,”
Informatika va Energetika Muammolari, vol. 2,
pp. 17–26, 2023.

8. A. Bakhtiyor, B. Ilkhom, A. Javokhir, A. Orif, “Using
the Capabilities of Artificial Neural Networks in
the Cryptanalysis of Symmetric Lightweight Block
Ciphers,” 2024, pp. 113–121.

9. B. Y. Sun, D.-S. Huang, H.-T. Fang, “Lidar signal
denoising using least-squares support vector
machine,” IEEE Signal Processing Letters, vol. 12,
pp. 101–104, 2005.

10. A. Kazemi, R. Boostani, M. Odeh, M. R. Al-Mousa,
“Two-Layer SVM: Towards Deep Statistical
Learning,” EICEEAI 2022, IEEE, 2022.

American Journal of Applied Science and Technology 112 https://theusajournals.com/index.php/ajast

American Journal of Applied Science and Technology (ISSN: 2771-2745)

11. P. Chen, B. Wang, H.-S. Wong, D.-S. Huang,
“Prediction of protein B-factors using multi-class
bounded SVM,” Protein and Peptide Letters, vol.
14, no. 2, pp. 185–190, 2007.

12. N. Cristianini, J. Shawe-Taylor, An Introduction to
Support Vector Machines and Other Kernel-Based
Learning Methods, 2000.

13. C. J. Burges, “A tutorial on support vector
machines for pattern recognition,” Data Mining
and Knowledge Discovery, vol. 2, no. 2, pp. 121–
167, 1998.

14. Hyperopt Documentation. Retrieved: 11 March
2024. https://hyperopt.github.io/hyperopt/

15. M. Lindauer et al., “SMAC3: A Versatile Bayesian
Optimization Package for Hyperparameter
Optimization,” JMLR, vol. 23, no. 54, pp. 1–9,
2022.

16. S. Shekhar, A. Bansode, A. Salim, “A Comparative
Study of Hyper-Parameter Optimization Tools,”
IEEE CSDE 2021, pp. 1–6.

17. J. Parra-Ullauri, X. Zhang, A. Bravalheri, R.
Nejabati, D. Simeonidou, “Federated
Hyperparameter Optimisation with Flower and
Optuna,” ACM SAC 2023, pp. 1209–1216.

18. Y. Bengio, “Practical Recommendations for
Gradient-Based Training of Deep Architectures,”
2012, pp. 437–478.

19. Y. Bengio, “Gradient-Based Optimization of
Hyperparameters,” Neural Computation, vol. 12,
no. 8, pp. 1889–1900, 2000.

20. K. R. Khamdamovich, H. Elshod, “Detecting spam
messages using naive Bayes,” ICISCT 2021, IEEE,
pp. 1–3.

21. J. Snoek, H. Larochelle, R. Adams, “Practical
Bayesian Optimization of Machine Learning
Algorithms,” NIPS, 2012.

22. L. Li, K. G. Jamieson, G. DeSalvo, A. Rostamizadeh,
A. Talwalkar, “Hyperband: A Novel Bandit-Based
Approach to Hyperparameter Optimization,”
JMLR, vol. 18, 2016.

23. Real E. et al., “Large-Scale Evolution of Image
Classifiers,” ICML 2017.

24. Bekmuratov T.F., Mukhamedieva D.T.,
Bobomurodov O.J., “Models of fuzzy criteria and
algorithms for weakly structured decisions,”
Mashinastrenie i Kompyuternie Texnologii, vol. 7,
2010.

25. A. D. Dwivedi, G. Srivastava, “Security analysis of
lightweight IoT encryption algorithms: SIMON

and SIMECK,” Internet of Things, vol. 21, p.
100677, 2023.

26. J. So, “Deep Learning-Based Cryptanalysis of
Lightweight Block Ciphers,” Security and
Communication Networks, 2020.

27. [A. Jain, V. Kohli, G. Mishra, “Deep Learning-
Based Differential Distinguisher for PRESENT,”
IACR ePrint, 2020/846.

28. H. Kim, S. Lim, Y. Kang, W. Kim, D. Kim, S. Yoon, H.
Seo, “Deep-Learning-Based Cryptanalysis of
Lightweight Block Ciphers Revisited,” Entropy,
vol. 25, no. 7, p. 986, 2023.

29. H. Grari et al., “Deep Learning-Based
Cryptanalysis of a Simplified AES Cipher,”
International Journal of Information Security and
Privacy, vol. 16, no. 1, pp. 1–16, 2022.

30. H. Kimura et al., “Output Prediction Attacks on
Block Ciphers Using Deep Learning,” 2022.

31. Abdurazzoqov J. R., Nochiziqli komponentlarni
shakllantirish va tasniflash algoritmlari, PhD
Dissertation, Tashkent, 2024.

https://hyperopt.github.io/hyperopt/
https://hyperopt.github.io/hyperopt/

