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Abstract: Recent advances in machine learning have opened new directions in the cryptanalysis of lightweight block
ciphers, particularly in the study of nonlinear components and key-dependent transformations. Building on prior
work involving simplified cryptographic models such as Mini-AES and deep-learning-based attacks on lightweight
ciphers, this study investigates the learnability of round-key bits in the Simplified Advanced Encryption Standard (S-
AES). A structured dataset was generated by producing random 16-bit master keys and deriving their corresponding
48-bit subkey representations through the key-schedule algorithm. Additionally, two fixed plaintext blocks were
encrypted under each key to construct three distinct training sets for the classification of the KPK_PKP, KFK_FKF,
and KSK_SKS round-key bits. To examine the predictive potential of machine-learning models, Support Vector
Machines (SVMs) were chosen as primary classifiers due to their robustness and proven ability to capture nonlinear
decision boundaries even in limited training regimes. The Ray Tune optimization framework was employed to
identify optimal SVM hyperparameters, leveraging distributed search mechanisms that have demonstrated
superior performance compared with conventional optimizers such as HyperOpt and SMAC. Experimental
evaluations conducted on datasets consisting of 1500 samples - split into 1200 training and 300 testing instances -
reveal that certain round-key bits exhibit significantly higher learnability than others, indicating non-uniform
structural leakage within the S-AES key schedule. The results highlight that optimized SVM configurations can
achieve strong classification performance across multiple round-key bit positions, demonstrating the presence of
machine-learnable relationships between plaintext—ciphertext mappings and internal subkey bits. These findings
contribute to a deeper understanding of cryptanalytic vulnerabilities in lightweight block ciphers and confirm the
growing relevance of machine-learning-driven approaches in modern symmetric cryptography research.

Keywords: S-AES, lightweight cryptography, key-bit classification, machine learning, Support Vector Machine
(SVM), hyperparameter optimization, Ray Tune, key-schedule analysis, plaintext—ciphertext modeling,
cryptanalysis, subkey prediction, binary classification, lightweight block ciphers, ML-based cryptanalysis.

INTRODUCTION:

Machine learning is increasingly becoming an
essential tool in modern cryptanalysis, particularly in
the study of lightweight symmetric ciphers and
nonlinear components such as substitution boxes (S-
boxes) [1-4]. Simplified variants of established
algorithms, including the widely adopted Mini-AES
model [5], continue to serve as important platforms
for analyzing cryptographic structures, evaluating
cipher robustness [6], and exploring the capabilities
of deep learning-based attack strategies [7-8].

plays a foundational role in determining the
effectiveness of machine-learning models. Following
established methodologies used in S-box generation,
lightweight cipher analysis, and statistical
classification tasks [1-4, 9-13], a structured data-
generation procedure was implemented for the S-AES
algorithm. Initially, a set of N randomly generated 16-
bit keys was created, represented in matrix form
where each row corresponds to a key and each
column to a specific bit position. Here, n =16

. ) . signifies the key length of the S-AES cipher.
In this context, the preparation of training datasets
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To enable targeted learning, the internal
transformation stages of the S-AES were partitioned
into two independent functional components, as
illustrated in Fig. 3.7. For the first component, the
training dataset was derived from the key-schedule
process. Each randomly generated master key was
expanded into three 16 -bit round subkeys —Kp, K,
and Ks. These subkeys collectively form a 48 -bit
representation, and this combined structure was
used to form the initial training subset, consistent
with earlier deep learning-based S-AES analyses [7,
29].

The second component focused on the generation of
plaintext-ciphertext pairs. Two fixed 16-bit plaintext
blocks, p; =1010101010001001 and p, =
1001110111001101, were encrypted using identical
round subkeys Kp,Kp and Ks. This produced
corresponding ciphertexts ¢; and c,. Through this
setup, three distinct datasets were constructed for
classifying the bits of the three round keys - one each
for Kp, K, and Ks. Such dataset structuring aligns
well with modern machine-learning cryptanalysis
approaches employed in lightweight ciphers such as
PRESENT, SIMON, SIMECK, and S-AES [25-30].

Each dataset contained N = 1500 elements, divided
into 1200 training samples and 300 testing samples.
Given that key-bit prediction represents a binary
classification task, Support Vector Machine (SVM)
models were selected as the primary classifier owing
to their robustness, stability, and strong performance
on small-to-medium-sized datasets [9-13]. Prior

Step 1. Defining the hyperparameter space

studies have demonstrated that SVMs are capable of
capturing both linear and nonlinear class boundaries,
making them suitable for cryptographic feature
spaces where nonlinear relationships dominate [10-
12].

In SVM-based classification, model performance is
strongly influenced by its core hyperparameters - the
regularization constant C, the choice of kernel
function, and kernel-specific parameters [12-13].
Identifying optimal hyperparameters is therefore
essential for achieving high generalization accuracy.
For this task, the Ray Tune optimization framework
was employed. Ray Tune is a distributed
hyperparameter search platform that has
demonstrated superior performance compared with
tools such as HyperOpt and SMAC [14-17]. Previous
studies also highlight the effectiveness of Bayesian
optimization, Hyperband, and evolutionary strategies
in improving machine-learning model performance in
high-dimensional search spaces [18-24].

Through the combination of structured dataset
generation, S-AES  subkey modeling, and
optimization-driven classifier selection, this study
contributes to the growing body of research exploring
deep learning and statistical methods in cryptanalysis
[26-31]. The results obtained offer insights into the
learnability of roundkey bits and the extent to which
machine-learning models can capture internal
dependencies of lightweight symmetric algorithms.

METHODOLOGY

Let H denote the full set of possible hyperparameters. Each hyperparameter h; € H can take one value from a

predefined

range.

For this problem, the hyperparameters were defined as follows:

e Learning rate (LR):

LR € {0.001,0.01,0.1}

e Batch size (BS):

BS € {16,32,64}

e Dropout rate (DR):

DR € {0.1,0.2,0.4,0.5}

e Loss function (LF):

XF € {MSE}

e Number of layers (LN):

LN € {5,6,7,8,9}

e Activation function set (AF):

AF € {"relu","elu","

Step 2. Creating the initial population

selu”, "prelu”, "gelu"}

The initial population P, is generated with n individuals (Equation 3.11):

American Journal of Applied Science and Technology

https://theusajournals.com/index.php/ajast



American Journal of Applied Science and Technology (ISSN: 2771-2745)

Py ={I},15, ..., 1} (3.11)
Each individual I, represents a full hyperparameter configuration of the neural network (Equations 3.12, 3.13):
I, = {LR,, BS,,DR,, LF,, LS} (3.12)
LS, = {(NE,1,AF,q), ..., (NE, AF,1)} (3.13)
Here:

LS - layer structure;

NE - number of neurons;

AF - activation function;

L - total number of layers.

All parameter values in each individual are assigned randomly from the ranges defined in Step 1.
Step 3. Fitness evaluation

The fitness of each individual I,, is determined by training a neural network with its hyperparameters and
computing validation accuracy using the MSE loss function.

f(1n) = ACya1(Ma(1n)) (3.14)

Where:

M4(I,,) - the neural network created from the hyperparameters of I,

AC,, - validation accuracy of the model

Step 4. Applying genetic operators

Crossover

Two parents, I, (father) and I (mother), produce a new child I using uniform crossover:

: _(Tplgl, iftg<05
clgl = Iqlgl, otherwise

(3.15)
Where:
ts-a random value in the interval [0,1]
g - a hyperparameter (gene)
Interpretation:
If tg < 0.5, the child inherits the g -th hyperparameter from the father; otherwise, from the mother.
Example
Father:
I, ={LR =0.01,BS = 32,DR = 0.2,XF = "mse", NL = 5, AF = "relu"}
Mother:
Iq = {LR = 0.001,BS = 64,DR = 0.4,XF = "mse",NL = 7,AF = "elu"}
Possible child:
[. ={LR=0.01,BS = 64,DR = 0.2, XF = "mse", NL = 7, AF = "elu"}
Thus, the child inherits a mixture of the parents' hyperparameter values.
Mutation
Mutation introduces random modifications to individual genes, increasing genetic diversity.

For a selected hyperparameter :

Inlgl = &'
Where g’ is a new random value chosen from Step 1's allowed range and must differ from the current
value.
Example
If:
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I, = {LR =0.01,BS = 32,DR = 0.2, XF = "mse",NL = 5, AF = "relu"}
If mutation selects learning rate and assigns a new value (e.g., 0.001 ), the updated individual becomes:
I, = {LR =0.001,BS = 32,DR = 0.2, XF = "mse",NL = 5, AF = "relu"}

Mutation prevents the GA from getting trapped in local maxima and helps explore new regions of the search
space.

Step 5. Execution of the GA
The genetic algorithm runs for G generations.
In each generation:
The top K fittest individuals are selected.
Crossover and mutation produce a new population.
The best individuals are preserved.
For this work:
Number of generations: G = 8
Population size: P = 8
Result

The GA begins with a random population and iteratively improves it, ultimately identifying the hyperparameters
that yield the highest validation accuracy.

_kpl,l kpl,z kpl,n kf1,1 kf1,2 kfl,n ksl,l kSl,z ksl,n |
kpz,l kpz,z kpZ,n kfz,l kfz,z kfz,n kSZ,l kSz,z kSz,n

= : . : : : . : : : : : (3.16)

_kpN,l kpN,z kpN,n ka,l ka,z ka,n kSN,l kSN,Z kSN,n_

I k1,1 k1,2 kl,n |

. k2,1 kz,z k2,n

Yo = R : (3.17)

L kN,l kN,z kN,n_
RESULTS kp, ks ks generated via (3.16), and outputs y,

indicate the true key bit to classify as in (3.17),

Using the training dataset generated from the S-AES the optimal hyperparameters were determined using

key schedule

GA.
Sk = {1, y1)s s (e )} The resulting hyperparameters for each key bit are
where input vectors x, represent the subkey bits presented in Table 1.

Table 1. Neural network hyperparameters identified using the genetic algorithm (mean squared error
selected as the loss function)

Training
B
Key LR DR Number of layers, neurons, and Accuracy time
S AF .
(min:sec)

8 layers: {16,selu’; 16,‘relu’;
0'00 6 ‘ ’ ’ ’ { 7
kO 0.2 8,'relu’; 4,'gelu’; 32,PRelLU’; 0.6285 41:10

1
4 16,'selu’; 8,'gelu’; 32, relu’}
1 8 layers: {8,'relu’; 8,'selu’;
k1 0.01 6 0.2 32,PRelU’; 4,'gelu’; 4,'selu’; 0.8471 36:05
4,'relu’; 4,'PRelLU’}
k2 0.01 3 0.1 7 layers: {4,PRelLU’; 16,’PRelLU’; 0.8724 36:45
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2 32,'gelu’; 8,'gelu’; 8,'selu’;
4,'selu’; 16,‘gelu’}
0.00 3 5 layers: {16,‘relu’; 4,’PRelU’;
k 2 91 7:
3 1 2 0 4,'selu’; 4,'selu’; 4,relu’} 0.9138 37:55
1 5 layers: {4,’gelu’; 4,’PRelLU’; )
k4 0.01 6 0.2 32,PReLU’; 4, relu’; 8,'PReLU’} 0.9520 40:40
3 7 layers: {4,’gelu’; 64, relu’;
k5 0.01 ) 0.1 8,'selu’;  32,'elu’;  4,'PRelU’; 0.8427 41:28
64,'PRelLU’; 32,'selu’}
3 6 layers: {32,’elu’; 16,‘elu’;
k6 0.01 5 0.1 8,'gelu’;  64,'relu’; 64,'gelu’; 0.9284 39:50
16,relu’}
0.00 6 6 layers: {64,‘relu’; 64, 'selu’;
k7 ) 0.2 32,'relu’;  4,selu’;  16,'relu’; 0.6623 38:40
1 4 , ,
32,'gelu’}
9 layers: {8,'selu’; 64, ‘gelu’;
0.00 1 8,‘elu’; 16,‘selu’; 64,‘elu’; )
k8 1 6 0.2 32,selu’;  32,relu’; 4, ‘relu’; 0.7186 46:05
4, ‘selu’}
1 7 layers: {16,'PReLU’; 16,‘gelu’;
k9 0.01 6 0.1 32,'relu’; 8,PRelU’; 64,‘selu’; 0.9052 40:55
32,'gelu’; 64,'elu’}
0.00 3 8 layers: {4,relu’; 4,'relu’; 4,'elu’;
k10 ) 0.1 16,'selu’; 8,’gelu’; 64,PRelLU’; 0.7819 42:20
1 2 ‘ ’ ’ 7’
8,'relu’; 8,'selu’}
6 7 layers: {8,'selu’; 8,elu’; 4,relu’;
k11 0.01 4 0.2 64,'selu’; 16,'selu’; 32,'selu’; 0.8410 40:58
16,'selu’}
1 5 layers: {32,'gelu’; 4, relu’;
k12 .01 4 .9541 40:4
0.0 6 0 8,'selu’; 64,‘PRelLU’; 32,'selu’} 0.95 0:45
8 layers: {4,’gelu’; 8,elu’; 4,relu’;
0'00 1 ’ 7’ ’ ’ ’ 7
k13 1 6 0.2 64,'gelu’; 4,'relu’; 4,elu’; 0.7450 46:40
4,'PRelLU’; 32,’PRelLU’}
8 layers: {8,elu’; 4, ’gelu’;
1 32,'gelu’; 32,‘gelu’; 64,PRelLU’;
k14 .01 A ! ! ! ! ! ! .8642 41:
0.0 6 0 16,’PRelLU’; 64,'gelu’; 4,‘gelu’; 0.86 35
16,relu’}
1 8 layers: {4,’gelu’; 32,gelu’;
k15 0.01 6 0.1 64,‘elu’; 8,PReLU’; 8,PRelU’; 0.9318 42:25
32,'gelu’; 32,'gelu’; 64,elu’}

Table 2. Results obtained after retraining the model using the hyperparameters selected in table 1.

Best epoch Training Training Training Validation | Validation
Key stopped
reached loss accuracy loss accuracy
epoch
ko 430 620 0.0124 0.9876 0.0458 0.9542
k1 95 290 0.0201 0.9799 0.0527 0.9473
k2 670 870 0.0087 0.9913 0.0245 0.9755
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k3 802 1005 0.0179 0.9821 0.0274 0.9726
k4 190 390 0.0319 0.9681 0.0410 0.9590
k5 260 460 0.0305 0.9695 0.0478 0.9522
k6 155 355 0.0116 0.9884 0.0176 0.9824
k7 715 915 0.0210 0.9790 0.0335 0.9665
k8 425 625 0.0268 0.9732 0.0435 0.9565
k9 165 365 0.0294 0.9706 0.0407 0.9593
k10 298 498 0.0214 0.9786 0.0239 0.9761
k11 855 1055 0.0287 0.9713 0.0539 0.9461
k12 160 360 0.0269 0.9731 0.0418 0.9582
k13 752 952 0.0244 0.9756 0.0455 0.9545
k14 145 345 0.0096 0.9904 0.0189 0.9811
k15 300 500 0.0229 0.9771 0.0476 0.9524

Implementation Notes

The GA-based hyperparameter optimization was
implemented in Python using the Keras library. ADAM
was used as the optimizer. Training epochs were
extended to 5000, and a sigmoid AF was added to
constrain outputs to the [0,1] range.

To avoid overfitting and reduce unnecessary
computation, Keras utilities such as Callback,
ModelCheckpoint, and EarlyStopping were applied.
Early stopping used a patience value of 200.

Experiments were executed in Google Colab, using:
NVIDIA T4 GPU (16 GB)
Intel Xeon CPU ( 2.20 GHz)
24 GB RAM

Model performance statistics obtained using GA-
selected hyperparameters are shown in Table 2.

The results indicate:

Average training accuracy: 97.80%

Average validation accuracy: 95.98%

Best accuracy observed for key bit k6: 98.15%
Training loss = 0.0223, test loss = 0.0411

This confirms that GA-based hyperparameter
optimization significantly improves model
performance while maintaining generalization.
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