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Abstract: Financial fraud has become a dynamic, high-velocity adversarial problem driven by the global scale of
digital payments, card-not-present commerce, and instantaneous settlement rails. Rapid detection requires
systems that combine low-latency stream processing, adaptive machine intelligence, and robust operational
governance. This article develops a unified, publication-ready framework for streaming fraud intelligence that
synthesizes architectural patterns (Kafka-style ingestion and materialized state), online machine learning methods
(incremental learners, adaptive windowing), anomaly detection approaches (Isolation Forests, LOF), ensemble and
gradient-boosted tree methods (XGBoost, LightGBM), and graph-based network detection techniques. Building on
seminal and contemporary research (Rajeshwari & Babu, 2016; Carcillo et al., 2018; Bifet & Gavalda, 2007) and
practitioner resources (Redis Inc., 2023; Tinybird Blog, 2023), the framework prescribes a layered pipeline: ultralow-
latency fast path for authorization decisions, contextual mid-path scoring for refined risk, deferred deep analysis
for network and laundering detection, and alarm-verification with human-in-the-loop adjudication. We elaborate
feature-engineering patterns suitable for streaming environments (bounded sliding windows, exponential decay
aggregates, probabilistic sketches), detail drift detection and mitigation strategies (adaptive windows, online weight
adaptation, active learning), and discuss trade-offs among latency, accuracy, explainability, and regulatory
accountability. Finally, we propose a prioritized empirical validation program—shadow deployments, synthetic
adversarial injections, and federated cross-institution pilots—and operational controls for auditability and privacy.
This synthesis provides researchers and practitioners with a conceptual and operational blueprint to design
resilient, explainable, and deployable real-time fraud detection systems.

Keywords: Real-time fraud detection; streaming analytics; online learning; anomaly detection; Kafka; adaptive
ensembles.

INTRODUCTION:

The migration of commerce into digital channels has
transformed both opportunity and risk for financial
institutions, merchants, and consumers. Card-
present and card-not-present transactions, mobile
payments, APl-based banking, and instantaneous

that carefully evade threshold-based rules
(Rajeshwari & Babu, 2016; Manoharan et al., 2024).
Consequently, fraud detection has shifted from an
investigatory, after-the-fact process to an operational
function requiring near-real-time inference and

settlement rails generate a volume and velocity of action.

events that outpace the response capabilities of Real-time fraud detection must satisfy multiple,
traditional batch analytics and static rule systems. In sometimes conflicting, objectives. Systems need to
such environments, fraudulent actors exploit generate accurate risk signals while adding minimal
technological scale and speed: automated account latency to authorization paths, maintain robustness
testing, synthetic identity creation, transaction to evolving adversarial behaviors, limit false positives
laundering through networks of merchants and mule that erode customer trust, and provide explainable
accounts, and coordinated low-and-slow campaigns evidence that supports disputes and regulatory
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reviews (Hanae et al., 2023; Bello et al., 2023). These
requirements implicate multiple technological
domains: streaming data infrastructure for high-
throughput event ingestion and stateful aggregation
(Dunning & Friedman, 2016), incremental or online
machine learning for concept drift adaptation (Bifet &
Gavalda, 2007; River Documentation, 2024), anomaly
detection techniques that identify novel, previously
unseen patterns (Liu et al., 2008; Breunig et al., 2000),
ensemble and tree-based models for high predictive
performance (Chen & Guestrin, 2016; Microsoft
LightGBM, 2023), and graph analytics for network-
level collusion discovery (Molloy et al., 2016).

Academic and industrial literatures document
piecemeal advances: research prototypes for
streaming credit-card fraud (Carcillo et al., 2018;
Thennakoon et al., 2019), practitioner case studies
demonstrating Kafka and SQL-oriented pipelines
(Tinybird Blog, 2023), and vendor solutions promising
low-latency detection with Redis or SingleStore
backends (Redis Inc., 2023; SingleStore, 2023). Yet the
field lacks a consolidated theoretical and practical
framework that explains how to map model families
to streaming primitives, design feature pipelines
respecting bounded state and latency, and
operationalize continuous learning safely within
regulated financial operations.

This article fills that gap by presenting Streaming
Intelligence for Real-Time Fraud Detection (SIRFD), a
comprehensive framework that unites streaming
architecture, online and offline learning methods,
anomaly detection theory, and governance practices.
SIRFD empbhasizes: (1) layered detection pipelines
(fast-path, mid-path, deferred analysis); (2) online
learning and adaptive window strategies to handle
concept drift; (3) hybrid anomaly detection
combining density-based and isolation methods; (4)
practical engineering patterns for bounded state and
approximate counting; and (5) alarm verification and
human adjudication to reduce false positives and
provide training signals. Throughout, claims and
design recommendations are grounded in the cited
literature and in best practices from industrial
implementations.

The remainder of the article offers deep theoretical
elaboration and specific operational guidance: a
methodology grounded in conceptual synthesis and
engineering constraints; a rich results section that
articulates the SIRFD pipeline and the expected
behavioral trade-offs; a discussion that unpacks
counter-arguments, regulatory concerns, and
limitations; and a conclusion that outlines a
prioritized empirical validation agenda.
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METHODOLOGY

Because the objective is to produce an integrative
theoretical and design framework rather than report
a novel dataset experiment, the methodology
synthesizes peer-reviewed research, conference
proceedings, and practitioner documentation to
derive prescriptive architectural and algorithmic
patterns. The method comprises five interlocking
steps: corpus curation, thematic extraction, mapping
of models to streaming primitives, architectural
derivation, and empirical validation planning.

Corpus curation targeted literature on streaming
fraud detection, online learning, anomaly detection,
tree-based and ensemble methods, and engineering
reports. Key academic sources include early
streaming fraud frameworks (Carcillo et al., 2018;
Rajeshwari & Babu, 2016), adaptive streaming
learning (Bifet & Gavalda, 2007), density and isolation
anomaly detectors (Breunig et al., 2000; Liu et al.,
2008), and graph analytics for transactional networks
(Molloy et al., 2016). Practitioner sources—Redis Inc.
(2023), SingleStore (2023), Tinybird (2023), and
vendor whitepapers—were integrated to ground the
framework in current deployment realities.
Documentation for LightGBM and XGBoost informed
pragmatic choices for mid-path scoring models
(Microsoft, 2023; Chen & Guestrin, 2016).

Thematic extraction identified recurring patterns and
design tensions: latency vs. model complexity,
interpretability vs. accuracy, drift resilience, false-
positive management, and privacy/legal constraints.
These themes guided the mapping of model families
to streaming primitives. For example, stateless, low-
dimensional models with explainable outputs are
suited for colocated fast-path inference; stateful
models requiring historical aggregates are mapped to
KTables or feature stores materialized from
compacted topics; anomaly detectors with high
compute cost are scheduled in deferred processing
bins or micro-batches. Online learning frameworks
(River) were considered for models needing
continuous updates without full retraining (River
Documentation, 2024).

Architectural derivation synthesized these mappings
into the SIRFD layered pipeline, specifying dataflows,
state management strategies, windowing semantics,
and fallback behaviors under overload. The design
emphasizes idempotent processing, bounded state,
and failure recovery semantics (exactly-once where
feasible). Additionally, the methodology elaborates
feature engineering patterns appropriate for
streaming contexts, such as exponential decay
aggregates and probabilistic sketches, and prescribes
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drift detection and adaptation mechanisms including
adaptive windowing (ADWIN) and online weight
adaptation.

Finally, empirical validation planning outlines
experiments feasible in real deployments: shadowing
(scoring without enforcement to measure false
positives in situ), controlled injections of synthetic
fraud variants (including GAN-generated adversarial
samples per OpenAl and internal whitepapers),

adversarial red-team  exercises, and cross-
institutional  pilots under  privacy-preserving
protocols. Metrics extend classical classification

measures to include time-to-detection distributions,
cost-weighted utility (fraud loss prevented vs.
remediation and customer loss), and operational KPls
such as review throughput and tail latency.

Throughout, the methodology explicitly records
assumptions: availability of sufficient telemetry
(device fingerprinting, merchant metadata), access to
adjudicated labels for supervised learning and
calibration, organizational MLOps maturity for model
deployment and monitoring, and legal clearance for
retention of audit logs under applicable privacy
regimes.

RESULTS

The results of the methodological synthesis are the
SIRFD architecture, a compendium of streaming
feature engineering patterns, a taxonomy of model
placements, adaptive learning strategies, and an

empirically oriented validation program. Each
component is explained in detail below.
SIRFD  Layered Architecture: Dataflow and

Responsibilities

SIRFD arranges processing into four primary layers
plus an orthogonal governance and alarm-verification
plane:

1. Event Ingestion & Normalization Layer: This
layer receives raw events (authorization requests,
device telemetry, authentication logs, merchant
metadata) through a high-throughput broker (e.g.,
Kafka). Events are partitioned by a stable routing
key—hashed primary account number, customer ID,
or device fingerprint—to preserve per-entity ordering
essential for stateful computations (Dunning &
Friedman, 2016). Normalization includes schema
validation, canonical merchant code mapping, and
lightweight enrichment via reference data (blacklists,
merchant risk scores).

2. Fast-Path (Authorization) Layer: Responsible
for sub-200ms response decisions, this layer
computes compact, explainable features (short
window velocity counts, device match booleans,
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simple behavioral embeddings) and executes low-
latency models—regularized logistic regression,
shallow decision trees, or small gradient boosting
models optimized for inference speed (Rajeshwari &
Babu, 2016; Carcillo et al., 2018). Actions include
allow, step-up (challenge), conditional approval with
monitoring, or soft decline. The fast path prioritizes
minimal latency and low false-positive costs for
customer experience.

3. Contextual Enrichment & Mid-Path Scoring
Layer: Running in parallel, this layer performs richer
aggregation across longer windows (hourly/daily),
KTable joins with persistent customer/device profiles,
and computes mid-range features such as rolling
spend averages, merchant chargeback rates, and
cross-device counts. More expressive models
(XGBoost, LightGBM) operate here under relaxed
latency constraints (sub-second to a few seconds) to
produce refined risk scores, prioritize human review
gueues, and adjust fast-path thresholds adaptively
(Chen & Guestrin, 2016; Microsoft, 2023).

4, Deferred Deep Analysis & Network Detection
Layer: Heavy analytic tasks—graph construction and
analysis for collusion detection, deep autoencoder
anomaly scoring, and adversarial synthesis—are
performed asynchronously on windowed data. Graph
snapshots are built from streamed edges (card—
merchant, device—account) and analyzed using
community detection and representation learning to
find rings and wash patterns indicative of laundering
(Molloy et al.,, 2016). Generative methods (GANSs)
synthesize rare fraud morphologies for augmentation
and robustness testing following practices described
in generative Al guidance (OpenAl, 2024).

5. Alarm-Verification & Governance Plane
(Cross-Cutting): Alerts from mid- and deep layers flow
into an alarm-verification pipeline combining rule-
based suppression, text analytics of merchant/user
notes, and verification classifiers trained on historical
adjudications (Sima et al., 2018). Human analysts
adjudicate prioritized alerts; their decisions feed
active learning loops to improve model calibration.
Governance enforces audit logging, feature
provenance tags, model versioning, and retention
policies for compliance.

Feature Engineering Patterns for Streaming Contexts

Feature design in streaming systems must balance

informativeness  with  bounded state and

computation. SIRFD prescribes the following

patterns:

° Bounded Sliding Windows: Implement fixed
https://theusajournals.com/index.php/ajast
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windows for velocity features (e.g., counts in last 1
minute, 10 minutes, 24 hours) with retention policies
that bound state stores, enabling predictable
memory usage (Carcillo et al., 2018).

° Exponential Decay Aggregation: Apply decay
factors to historical aggregates to weight recent
behavior more heavily, allowing sensitivity to sudden
behavior shifts while maintaining long-term context
(Bifet & Gavalda, 2007).

° Micro-embeddings for Behavioral Signatures:
Maintain compact vector representations for
customer or device behavior updated incrementally
using streaming updates; these enable similarity
comparisons and rapid drift detection.

° Probabilistic  Sketches: Use Count-Min
sketches and HyperlLoglLog to estimate counts and
distinct counts (unique devices per account) with low
memory—key for detecting diffusion patterns across
actors under high throughput.

° Feature Provenance and Versioning: Tag
features with transformation version, source topic,
and timestamp to provide traceability for audit and
explainability.

Anomaly Detection Taxonomy and Streaming
Adaptation
SIRFD embraces a hybrid anomaly detection

approach. Classical density-based methods (LOF)
detect local deviations in density (Breunig et al.,
2000), while isolation methods (Isolation Forest) are
effective in high-dimensional spaces and can be
adapted to streaming via incremental tree updates or
periodic re-fitting on windowed data (Liu et al., 2008).
Both families have complementary strengths: LOF is
sensitive to local neighborhood structure, beneficial
for detecting small-scale deviations; Isolation Forests
scale well and are robust in many settings.

For streaming application, SIRFD recommends:

° Streaming Adaptive Windowing (ADWIN):
Monitor performance and feature distributions using
adaptive windowing that grows or shrinks
automatically when statistical tests detect change,
enabling dynamic re-training windows (Bifet &
Gavalda, 2007).

° Online Isolation Ensembles: Maintain a pool
of small isolation trees updated via incremental
techniques or rotated windows to preserve sensitivity
to new anomalies.

° Hybrid Scoring: Combine anomaly scores with
supervised  risk  probabilities—e.g., weighted
composite score where anomaly detectors increase
attention to low-probability but high-uncertainty
events.

American Journal of Applied Science and Technology

320

Model Placement and Serving Strategies

Mapping models to stream primitives requires careful
alignment of latency, state, and update semantics:

° Colocated Stateless Models: Fast-path
models with no external dependencies are embedded
within stream processors for minimal serialization
overhead.

° Stateful Models with Feature Stores: Models
requiring user history read from materialized views
(KTables) or feature stores built on compacted Kafka
topics; these stores guarantee available recent state
under controlled retention.

° Asynchronous Heavy Models: Deep nets and
graph learners are served off-path; their outputs
(watchlist updates, enriched labels) feed back into
mid-path models and case systems.

° Online Learners: River and similar libraries
enable incremental model updates without full
retraining, suitable for drift responses (River
Documentation, 2024).

Adaptive Ensembles and Drift Management

Adaptation is required to handle nonstationary fraud
landscapes:

° Ensemble  Weight Adaptation: Adjust
ensemble weights using short-window performance
metrics, enabling the system to emphasize models
currently most effective (Bello et al., 2024).

° Active Learning for Label Efficiency: Surface
high-uncertainty cases to human reviewers to acquire
labels that most improve model boundaries, crucial
where fraud labels are scarce.

° Adversarial Augmentation: Use GANs and
synthetic data generation to craft edge-case fraud
samples, improving robustness and training coverage
(OpenAl, 2024; Goodfellow et al., 2014).

Operational Controls: Latency, Throughput, and
Failover

SIRFD prescribes operational controls:

° Latency Budgets and Graceful Degradation:

Define strict latency SLAs for the fast path; under
overload, degrade to simpler heuristics rather than
blocking authorizations.

° Exactly-Once or At-Least-Once Semantics:
Use exactly-once semantics where feasible for state
updates to avoid duplication; otherwise enforce
idempotent processing.

° Observability: Instrument model inputs,
score distributions, drift metrics, and tail latencies to
enable rapid diagnosis.

Empirical Validation Roadmap and Metrics
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SIRFD recommends a staged validation strategy:

1. Shadow Deployment: Run models in
production traffic without enforcement to measure
real false positive impacts and time-to-detection in
situ.

2. Synthetic Injection Tests: Inject crafted fraud
patterns, including GAN-generated adversarial
samples, to stress test detection under controlled
conditions.

3. Adversarial Red-Team Exercises: Organize
structured penetration tests simulating adaptive
attackers.

4, Cross-Institution Federation Pilots: Evaluate
federated learning schemes for network detection
while enforcing privacy constraints.

Evaluation metrics combine classification fidelity
(precision, recall, AUC) with operational KPIs (average
and tail time-to-detection, analyst hours per 1,000
alerts, customer complaint rates, and cost-weighted
utility).

DISCUSSION

The SIRFD framework illuminates key trade-offs,
exposes practical constraints, and offers design
prescriptions grounded in both theory and
deployment realities. We examine these aspects in
depth.

Balancing Latency and Predictive Power

High-capacity models (deep nets, graph embeddings)
can detect subtle, networked fraud but cannot meet
sub-200ms authorization windows. SIRFD’s design
compartmentalizes inference—fast, simple models
make immediate calls; mid-path models refine and
escalate; deep analyses run deferred. This separation
maintains customer experience while enabling
thorough investigative capability (Carcillo et al.,
2018). A counter-argument favors deploying
powerful models with hardware acceleration to meet
latency; while possible, the operational cost and
added engineering complexity (specialized inference
clusters, GPU provisioning) make a mixed approach
more pragmatic for most institutions.

Explainability and Regulatory Requirements

Regulators and customers demand explanations for
decisions that affect access or financial standing.
Model explainability is therefore an operational
requirement (Hanae et al., 2023). SIRFD recommends
explainable models for automated decisions and
maintains provenance trails and human adjudication
logs for higher-complexity model outputs.
Explainability techniques—Ilocal surrogate models,
SHAP value summaries—can be employed for both
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fast and mid-path models, ensuring the narrative
required for disputes.

Concept Drift, Data Scarcity, and Label Quality

Fraud labels are sparse and noisy, and fraud tactics
drift. Active learning and online adaptation help, but
they require judicious human resources to label
prioritized cases. The framework’s ensemble
adaptation and adaptive windowing manage drift;
however, when attack morphologies change
fundamentally (new channels, regulatory shifts),
structural model reengineering may be required.
Additionally, label quality influences model
calibration—systematic biases in adjudication (e.g.,
over-flagging certain merchant categories) must be
monitored and corrected.

Network Detection and Cross-Institution Cooperation

Many fraud schemes span institutions. Cross-
institution network analysis promises significant
detection gains but faces legal and privacy barriers.
Federated learning  and privacy-preserving
aggregation are promising but bring complexity and
potential statistical limitations. Legal frameworks and
industry consortia are required to operationalize
cross-institution intelligence  without violating
competition law or privacy statutes (Molloy et al.,
2016).

Adversarial Arms Race and Defensive Strategies

Fraud is adversarial: attackers respond to detection
improvements. Defensive strategies must therefore
be dynamic: ensemble diversity, adversarial training,
rapid retraining loops, and operational defenses (rate
limiting,  watchlists).  Generative  adversarial
approaches both simulate emergent attacks for
training and expose model vulnerabilities.
Nevertheless, adaptive attackers will find new
vectors, so the system must be designed for
continuous evolution rather than a one-time
deployment (Goodfellow et al., 2014).

Privacy, Auditability, and Evidence Retention

Financial institutions must retain sufficient evidence
for disputes and regulatory audits while protecting
privacy. SIRFD prescribes feature provenance, secure
off-line audit stores, and cryptographic commitments
to log digests where immutability is required without
exposing raw Pll in permanent ledgers. Data retention
policies should balance forensic needs with privacy
regulation (Hanae et al., 2023).

Operational Cost and Organizational Readiness

Implementing SIRFD requires significant engineering
and organizational capability—stream engineering,
MLOps, a fraud operations center, and
legal/compliance support. The framework supports
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incremental adoption—start with fast-path scoring
and alarm verification, then integrate mid-path
enrichment and deferred graph analytics—allowing
institutions to build capability while managing risk
and cost.

Limitations and Future Research Directions

SIRFD is a synthesis; empirical benchmarking across
multiple payment channels, geographies, and
institution sizes is required. Specific research needs
include: quantitative latency-accuracy curves for
model families wunder real load; empirical
performance of online isolation forests and streaming
LOF variants; evaluation of federated graph learning
methods for cross-institution detection under privacy
constraints; and human factors research on optimal
adjudication workflows and customer
communication strategies.

A prioritized research agenda includes shadow
deployments in diverse production contexts,
systematic adversarial testing protocols, and pilot
cross-institution federated experiments to quantify
detection uplift vs. privacy cost.

CONCLUSION

This article presented SIRFD, a comprehensive
framework for streaming intelligence in real-time
fraud detection that integrates stream processing
infrastructure, adaptive machine learning, anomaly
detection techniques, and governance controls. By
decomposing detection into layered
responsibilities—fast-path authorization, mid-path
refinement, deferred deep analysis—and by
prescribing practical feature engineering, adaptation
strategies, and validation roadmaps, SIRFD provides
both theoretical guidance and operational
prescriptions. Real-world validation through shadow
deployments and adversarial testing will be crucial to
quantify performance and to refine the design. In the
evolving adversarial landscape of digital finance,
systems that combine low latency, continuous
adaptation, explainability, and robust governance will
be essential to protect consumers and institutions
while preserving trust in digital payments.
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