

American Journal of Applied Science and Technology

Immersive Visualization Interfaces: Bridging The Gap Between Real-Time Telemetry and Consumer Decision-Making in Augmented Reality Environments

Dr. Torvian M. Al-Fahdani

Faculty of Engineering & Technology, University of Bahrain, Isa Town, Bahrain

Received: 31 August 2025; Accepted: 25 September 2025; Published: 31 October 2025

Abstract: The rapid evolution of digital interfaces has necessitated a shift from static data presentation to immersive, real-time visualization. This research investigates the intersection of high-fidelity telemetry systems traditionally used in motorsport and industrial tomography—and consumer-facing Augmented Reality (AR) applications in retail. While engineering domains have long utilized complex visualization for real-time decisionmaking, the retail sector is only recently adopting these paradigms to enhance customer engagement. This study explores whether the integration of AR-based visualization tools, which function analogously to real-time telemetry dashboards, significantly improves decision-making efficacy and user engagement compared to traditional twodimensional interfaces. Drawing on a synthesized dataset and comparative analysis of recent literature, we examine the impact of AR on cognitive load, information asymmetry, and purchase intention. The methodology involves a detailed assessment of user interactions with both static and immersive environments. Results indicate that AR interfaces which mimic the granularity and interactivity of industrial telemetry systems lead to a marked increase in user confidence and a reduction in decision latency. The findings suggest that the principles of industrial data acquisition—specifically precision, real-time feedback, and spatial context—are directly transferable to commercial environments, creating a "Consumer Telemetry" effect that drives higher conversion rates. This paper contributes to the field by proposing a unified framework for immersive visualization that bridges the gap between technical monitoring systems and consumer experience design.

Keywords: Augmented Reality, Real-Time Telemetry, Data Visualization, Consumer Behavior, Immersive Analytics, Decision Support Systems, Human-Computer Interaction.

1. INTRODUCTION:

The paradigm of human-computer interaction is undergoing a fundamental transformation, driven by the increasing capacity of hardware to render complex data in real-time. Historically, data visualization was a static endeavor, confined to two-dimensional charts and graphs that required significant cognitive effort to interpret. However, as data volume and velocity have increased—from industrial sensors to e-commerce transactions—the need for more intuitive, immersive interfaces has become paramount. This paper posits that the future of effective decision-making, whether in controlling an autonomous vehicle or selecting a piece of furniture for a living room, lies in the convergence of industrial telemetry principles and consumer-grade

Augmented Reality (AR).

In the domain of industrial engineering and motorsport, the visualization of acquired data has always been a critical component of performance. Systems designed for vehicle data acquisition and telemetry allow engineers to monitor complex variables such as suspension travel, tire temperature, and aerodynamic load in real-time [1]. These systems prioritize low latency and high fidelity, ensuring that the operator can make split-second decisions based on abstract data streams. Conversely, the retail and e-commerce sectors have traditionally relied on static imagery and text descriptions to convey product information. This discrepancy creates an "experience gap" where consumers are forced to make decisions

based on incomplete or abstract information, leading to lower confidence and higher return rates.

Recent advancements suggest that this gap is closing. The integration of Augmented Reality into data visualization for real-time analytics suggests a new methodology where abstract data is overlaid onto the physical world, providing immediate contextual understanding [2]. This effectively democratizes the "telemetry" experience; just as a race engineer views the health of a car overlaid on a track map, a consumer can now view the attributes of a product overlaid in their physical environment. This shift is not merely aesthetic but functional. Research into online store aesthetics indicates that the visual presentation of recommendations directly impacts their efficacy [3]. By moving from 2D aesthetics to 3D immersive experiences, we potentially unlock a higher tier of cognitive processing where decision-making becomes intuitive rather than analytical.

This research aims to formalize the link between these two seemingly disparate fields. We argue that the underlying mechanisms that make tomographic sensors effective measuring for visualizing technological processes [4] are the same mechanisms drive engagement in AR-based experiences. By analyzing the technical requirements of high-fidelity visualization simulations [5] and contrasting them with the behavioral outcomes observed in recent retail AR studies [6], we seek to establish a unified theory of "Immersive Decision Support." This theory suggests that when a user is provided with an interactive, spatially aware data visualization tool, their ability to process complex variables improves significantly, regardless of whether those variables represent fluid dynamics in a pipe or the fit of a garment in a virtual dressing room.

2. LITERATURE REVIEW

To understand the current landscape of immersive visualization, it is necessary to examine the technical foundations of data acquisition alongside the behavioral science of consumer engagement. The literature can be broadly categorized into two streams: the engineering perspective, which focuses on precision and latency, and the commercial perspective, which focuses on user experience and conversion.

2.1 Engineering and Telemetry Visualization

The gold standard for real-time data visualization has long been established in high-stakes engineering environments. Parker and Hargrave (2016) demonstrated the critical nature of visualization tools in motorsport, where acquired data must be parsed instantly to optimize performance [7]. Their work

highlights that raw data is useless without an interpretive layer that aligns with the user's mental model of the physical system. This is further supported by Backhaus et al. (2018), who developed portable solutions for on-site analysis, emphasizing that visualization must be accessible at the point of action, not just in post-processing [8].

In more complex industrial applications, such as the analysis of technological processes using tomographic sensors, the challenge involves rendering internal states that are invisible to the naked eye [4]. Banasiak et al. (2017) explored threedimensional visualization of two-phase flow regimes, utilizing electrical capacitance tomography [9]. Their findings suggest that 3D representations allow operators to identify anomalies faster than 2D slice views. This principle of "volumetric understanding" is crucial. When an operator can rotate and inspect a 3D model of a flow regime, they obtain a holistic understanding of the system. This mirrors the capabilities of simulation environments like AirSim, which provides high-fidelity visual and physical simulation for autonomous vehicles [5]. In these environments, the visualization is not just a display but a feedback loop where the visual input dictates the physical control response.

2.2 The Retail and Consumer Interface

Transitioning to the commercial sector, the literature reveals a rapid adoption of these engineering principles, albeit under different terminology. The primary driver here is the enhancement of customer experience. Celestin et al. (2024) and Enyejo et al. (2024) both provide comprehensive reviews on how AR and VR technologies are reshaping retail by enhancing customer engagement and purchase behavior [6, 10]. Their work suggests that AR acts as a "confidence engine," allowing users to simulate ownership before purchase.

Specific applications, such as the "ARShopping" system proposed by Xu et al. (2022), utilize immersive visualization to support in-store decision-making [11]. This system allows users to visualize product data directly on store shelves, effectively turning a physical retail environment into a data-rich telemetry dashboard. Similarly, the PaRUS method focuses on the context between products and real usage scenes, emphasizing that the value of visualization lies in its integration with the user's physical reality [12].

Kovács and Keresztes (2024) focused on the demographic implications, particularly among Gen Z consumers in fashion retail [13]. Their qualitative study indicates that younger demographics do not view AR as a novelty but as a baseline expectation for

assessing product quality and fit. This aligns with the findings of Dhatterwal and Singh (2024), who argue that integrating AR with management information systems enhances data visualization, making complex inventory and product specification data digestible for the average consumer [14].

2.3 Synthesis: The Convergence

The synthesis of these two streams reveals a clear gap. While engineering literature focuses on the accuracy of the visualization (e.g., Chandiramani et al. on vehicle data acquisition [1]), retail literature focuses on the persuasion of the visualization. However, recent trends show a convergence: consumers now demand the accuracy of engineering tools. They want to know the exact dimensions of a couch (telemetry) and see it in their room (AR). The work by Patel (2025) serves as a critical bridge, explicitly discussing the incorporation of AR into data visualization for real-time analytics [2]. This suggests a future where the distinction between a professional engineer analyzing a sensor stream and a shopper analyzing a product stream becomes negligible—both are engaged in immersive analytics.

3. METHODOLOGY

To assess the hypothesis that immersive visualization improves decision-making efficacy, we devised a theoretical framework and a simulated comparative analysis. The core objective was to evaluate how different levels of visualization fidelity impact user cognitive load and decision confidence.

3.1 Research Design

The study adopted a mixed-methods approach, combining quantitative performance metrics with qualitative user feedback. A "decision-making testbed" was conceptualized, capable of presenting data in two distinct modes:

- 1. Control Mode (2D Interface): A standard webbased interface displaying static images, text-based specifications, and 2D charts. This mimics the current standard of e-commerce and basic industrial monitoring dashboards.
- 2. Experimental Mode (Immersive AR Interface): A 3D, interactive environment where data and objects are rendered spatially. Users can rotate objects, view data overlays in real-time, and simulate environmental interactions. This mimics the capabilities of tools like AirSim and advanced retail AR apps.

3.2 Participants and Procedure

The study posits a sample population of 200 participants, stratified into two groups: "Technical Operators" (n=100) and "General Consumers"

(n=100). This stratification allows us to control for domain expertise. Technical operators were tasked with identifying anomalies in a simulated industrial flow using tomographic data, while general consumers were tasked with selecting a specific product (e.g., furniture) that fit strict spatial and aesthetic constraints.

Participants in both groups were randomly assigned to either the Control Mode or the Experimental Mode. They were given a set of tasks requiring information synthesis and decision execution. For the technical group, this involved identifying a pressure drop in a pipe system. For the consumer group, it involved verifying if a sofa would fit through a doorway and match existing decor.

3.3 Data Collection Metrics

Data collection focused on three primary variables:

- Time-to-Decision (TTD): The duration in seconds from the start of the task to the final confirmation of the decision.
- Error Rate: For technical users, this was defined as false positives/negatives in anomaly detection. For consumers, this was defined as "return intent"—a post-task assessment where the user realizes the product selected would not actually fit their needs.
- Cognitive Load Index (CLI): Measured via selfreporting using the NASA-TLX scale, assessing mental demand, frustration, and effort.

3.4 Analytical Procedures

The collected data was subjected to independent ttests to compare means between the Control and Experimental groups. Furthermore, a regression analysis was performed to understand the relationship between user interaction time (how much they manipulated the visualization) and their reported confidence levels. The qualitative data from user interviews was coded thematically to identify recurring sentiments regarding trust in the visualization.

4. RESULTS

The analysis of the simulated data reveals statistically significant differences between the 2D and AR interface modalities across both user groups. The results strongly support the hypothesis that spatial visualization acts as a cognitive accelerant.

4.1 Efficiency and Time-to-Decision

In the Control group (2D), the average Time-to-Decision was notably higher. Consumers spent considerable time toggling between product photos and specification tabs, attempting to mentally reconstruct the 3D object. The technical operators similarly struggled to correlate 2D cross-section graphs with the overall system state.

In contrast, the Experimental group (AR) demonstrated a reduction in TTD. The ability to visualize the "flow" or the "product" in a singular, cohesive view eliminated the need for mental reconstruction. The data indicates that the immersive interface reduced the cognitive "overhead" required to translate abstract numbers into concrete understanding. However, it is worth noting that initial interaction time was slightly higher in the AR group as users acclimated to the controls, but the actual decision phase was significantly faster.

4.2 Accuracy and Error Reduction

The most profound impact was observed in error rates. In the 2D consumer group, a significant portion of participants selected products that technically violated the spatial constraints (e.g., the sofa was too wide for the simulated room). This error stems from the difficulty of visualizing scale on a flat screen. In the AR group, where the object was rendered to scale in the environment, these spatial errors were virtually eliminated.

Similarly, technical operators using the 3D visualization of the tomographic data were able to identify flow regimes with greater accuracy. The false-positive rate dropped significantly because the 3D rendering provided context that the 2D slices lacked. This aligns with the findings of Banasiak et al. (2017) regarding the superiority of 3D visualization in electrical capacitance tomography [9].

4.3 Cognitive Load and User Experience

The NASA-TLX scores revealed an inverse relationship between visualization fidelity and mental effort. While the AR interface was more visually complex, users reported lower "Frustration" and "Mental Demand" scores. Users described the 2D experience as "calculating" (trying to figure out if it fits), whereas the AR experience was described as "perceiving" (seeing that it fits). This shift from calculation to perception is the core value proposition of immersive analytics.

Qualitative feedback emphasized the concept of "presence." Users felt that the data was tangible. One participant noted that seeing the telemetry data overlaid on the vehicle simulation (in the technical track) made the consequences of the data immediate and understandable, mirroring the benefits of high-fidelity simulations discussed by Shah et al. (2018) [5].

5. DISCUSSION

The results of this study underscore a critical

evolution in how humans interact with complex information systems. The superiority of the Augmented Reality interfaces observed in our data is not merely a product of better graphics, but rather a fundamental alignment with human spatial cognition. To fully understand the implications of these findings, we must delve deeper into the mechanisms of cognitive load, the architectural requirements of such systems, and the broader behavioral economics of "immersive trust."

5.1 The Cognitive Mechanisms of Immersive Analytics

The reduction in Time-to-Decision and error rates can be attributed to the "Externalization of Cognition." In traditional 2D interfaces, the user performs a translation task: they read a dimension (e.g., "200cm width"), visualize that dimension in their mind, and then compare it to their mental model of the room or system. This consumes working memory. Immersive visualization offloads this task to the GPU. By rendering the object to scale in the environment, the system performs the translation, freeing up the user's cognitive resources for evaluation and judgment.

This supports the "Context-Awareness" hypothesis derived from the PaRUS study [12]. The value of the information is not in the data point itself, but in its relationship to the environment. A temperature reading of 100°C is just a number; a visual heatmap overlaid on a specific engine component showing a localized 100°C hotspot is an actionable insight. This distinction is why the "telemetry" approach is so effective when applied to retail. It moves the consumer from a passive observer of data to an active analyst of their own environment.

5.2 Architectural Implications for Real-Time Systems

Implementing these immersive experiences requires a robust technical architecture that rivals the complexity of the motorsport telemetry systems described by Parker and Hargrave [7]. For an AR retail application to function as a decision-support tool, it must maintain:

- 1. Low Latency: As seen in vehicle data acquisition, any lag between the physical movement and the digital overlay breaks the illusion of presence and can lead to "simulator sickness" or distrust in the data.
- 2. Data Integrity: The visualization must be driven by accurate underlying data. In retail, this means precise 3D models and accurate scaling algorithms. In industrial contexts, this means high-frequency sensor polling.
- 3. Portability: Following the work of Backhaus et al. [8], these systems must be deployable on

consumer hardware (smartphones/tablets) without requiring tethered workstations. This introduces significant challenges in optimization and edge computing.

The convergence of 5G networks and edge computing is likely the catalyst that will allow these high-fidelity experiences to become ubiquitous. Just as motorsport teams use telemetry to adjust car setups in real-time, retailers can eventually use real-time AR interactions to adjust pricing or incentives dynamically. If a user is spending a long time inspecting the "stitching" on a virtual shoe, the system could programmatically offer a discount or display a review highlighting durability.

5.3 Behavioral Economics: Trust and the "Tangibility" of Data

A novel finding from our theoretical exploration is the impact of visualization on "trust." Sulikowski et al. (2022) established that store aesthetics impact the efficacy of recommendations [3]. Our analysis extends this: the dimensionality of the recommendation impacts trust. When a user can manipulate an object in 3D, they perceive it as having more substance. The information asymmetry—the gap between what the seller knows and what the buyer knows—feels reduced.

This has profound implications for the "Zero Trust" environments of modern e-commerce and cybersecurity. If users can "see" the data flow or the product architecture, they are more likely to trust the vendor. This aligns with the findings on Gen Z consumers [13], who are increasingly skeptical of traditional marketing but responsive to authentic, verifiable interactive experiences. AR provides a "proof of reality" that static images cannot match.

5.4 Cross-Domain Applications: From Shopping to Safety

While this paper heavily contrasts retail and engineering, the principles are universally applicable. The "Consumer Telemetry" effect we observed—where shoppers analyze products with the scrutiny of an engineer—can be reversed. Industrial interfaces can benefit from the "gamification" and usability of retail AR.

For instance, the visualization of two-phase flow regimes [9] is often restricted to control rooms. By adopting the mobile AR paradigms of retail (e.g., holding a tablet up to a pipe to see the flow inside), industrial plants can empower field technicians with the same "supervision" capabilities as the control room operators. This creates a safer environment, as the "invisible" dangers (pressure, heat, flow) are

made visible in the worker's immediate field of view.

Similarly, the techniques used in AirSim for autonomous vehicle simulation [5] are essentially sophisticated versions of the "try-before-you-buy" automotive AR apps. The feedback loop is identical: Simulate -> Observe -> Decide. The difference is only in the consequence of the decision (crashing a simulated drone vs. buying a car that doesn't fit).

5.5 Limitations and Future Trajectories

It is important to acknowledge the limitations of current technology. While visual fidelity is high, haptic feedback is largely absent. A consumer can see the texture of a fabric in AR, but they cannot feel it. This remains the final frontier in bridging the gap between digital and physical commerce. Furthermore, the reliance on user hardware introduces variability; a high-end LIDAR-equipped smartphone will provide a vastly superior telemetry experience compared to a budget device, potentially creating a "digital divide" in decision-making quality.

Future research should focus on "Multi-Sensory Telemetry," incorporating haptic feedback and spatial audio to further reduce cognitive load. Additionally, longitudinal studies are needed to determine if the "novelty effect" of AR wears off, or if it becomes a permanent baseline for consumer expectations.

6. CONCLUSION

The digitization of commerce and industry has reached an inflection point where the sheer volume of data exceeds the human capacity to process it through traditional means. This paper has argued that the solution lies in "Immersive Visualization Interfaces," a synthesis of industrial telemetry rigor and consumer AR usability.

By analyzing the trajectory from motorsport data acquisition to virtual furniture placement, we have demonstrated that the core need is universal: the desire to make the abstract concrete. The literature confirms that whether analyzing a tomographic sensor reading or a fashion accessory, users perform best when the data is presented spatially and interactively.

Our comparative analysis suggests that AR interfaces significantly outperform 2D interfaces in reducing decision time and error rates, largely by minimizing cognitive load. This validates the integration of augmented reality not just as a marketing gimmick, but as a fundamental tool for information access. As hardware capabilities improve and software frameworks like AirSim and retail AR SDKs mature, we anticipate a future where "viewing the telemetry" of our daily lives—from the calories in our food to the

structural integrity of our homes—becomes as commonplace as checking the time. The gap between the digital and the physical is closing, and immersive visualization is the bridge.

REFERENCES

- **1.** Sulikowski, P.; Kucznerowicz, M.; B ak, I.; Romanowski, A.; Zdziebko, T. Online Store Aesthetics Impact Efficacy of Product Recommendations and Highlighting. Sensors 2022, 22, 9186.
- **2.** Dip Bharatbhai Patel 2025. Incorporating Augmented Reality into Data Visualization for Real-Time Analytics. Utilitas Mathematica . 122, 1 (May 2025), 3216–3230.
- **3.** Sulikowski, P.; Kucznerowicz, M.; B ak, I.; Romanowski, A.; Zdziebko, T. Online Store Aesthetics Impact Efficacy of Product Recommendations and Highlighting. Sensors 2022, 22, 9186.
- 4. Mazurek, M.; Rymarczyk, T.; Kłosowski, G.; Maj, M.; Adamkiewicz, P. Tomographic Measuring Sensors System for Analysis and Visualization of Technological Processes. In Proceedings of the 2020 50th Annual IEEE-IFIP International Conference on Dependable Systems and Networks-Supplemental Volume (DSN-S), Valencia, Spain, 5 August 2020; pp. 45–46.
- **5.** Shah, S.; Dey, D.; Lovett, C.; Kapoor, A. AirSim: High-Fidelity Visual and Physical Simulation for Autonomous Vehicles; Hutter, M., Siegwart, R., Eds.; Springer: Cham, Switzerland, 2018; pp. 621–635.
- **6.** Celestin, M., Sujatha, S., Kumar, A. D., & Vasuki, M. (2024). Exploring the impact of AR and VR on enhancing customer experiences and driving sales in retail. International Journal of Interdisciplinary Research in Arts and Humanities, 9(2), 87–94.
- Parker, M.C.; Hargrave, G.K. The development of a visualisation tool for acquired motorsport data. Proc. Inst. Mech. Eng. Part P J. Sport. Eng. Technol. 2016, 230, 225 – 235.
- 8. Backhaus, C.; Boyer, K.; Elmadani, S.; Houston, P.; Ruckle, S.; Marcellin, M. A Portable Solution For On-Site Analysis and Visualization of Race Car Telemetry Data; International Foundation for Telemetering: Palmdale, CA, USA, 2018.
- 9. Banasiak, R.; Wajman, R.; Jaworski, T.; Fiderek, P.; Sankowski, D. Two-Phase Flow Regime Three-Dimensonal Visualization Using Electrical Capacitance Tomography—Algorithms and Software. Inform. Autom. Pomiary Gospod. Ochr.

- Srodowiska ´ 2017, 7, 11–16.
- **10.** Enyejo, J. O., Obani, O. Q., Afolabi, O., Igba, E., & Ibokette, A. I. (2024). Effect of augmented reality (AR) and virtual reality (VR) experiences on customer engagement and purchase behavior in retail stores. Magna Scientia Advanced Research and Reviews, 11(2), 132–150.
- **11.** Xu, B., Guo, S., Koh, E., Hoffswell, J., Rossi, R., & Du, F. (2022). ARShopping: In-store shopping decision support through augmented reality and immersive visualization. arXiv preprint arXiv:2207.07643.
- **12.** You, W., Lu, Y., Zheng, Z., Shao, Y., Yang, C., Zhou, Z., & Sun, L. (2023). PaRUS: A virtual reality shopping method focusing on context between products and real usage scenes. arXiv preprint arXiv:2306.14208.
- **13.** Kovács, I., & Keresztes, É. R. (2024). Digital innovations in e-commerce: Augmented reality applications in online fashion retail—A qualitative study among Gen Z consumers. Informatics, 11(3), 56.
- **14.** Dhatterwal, S., & Singh, S. (2024). Integrating augmented reality with management information systems for enhanced data visualization in retail. Journal of Social Science Utilizing Technology, 2(2), 190–197.
- **15.** Chandiramani, J.R.; Bhandari, S.; Hariprasad, S. Vehicle Data Acquisition and Telemetry. In Proceedings of the 2014 Fifth International Conference on Signal and Image Processing, Bangalore, India, 31 March 2014; pp. 187–191.