

American Journal of Applied Science and Technology

# The Impact Of Antioxidant Enzymes On Oxidative Stress

Halimova Maftuna Obidovna

Assistant of the Department of "Medical and Biological Chemistry", Bukhara State Medical Institute, Uzbekistan

Email: maftuna\_halimova@bsmi.uz

Received: 27 September 2025; Accepted: 19 October 2025; Published: 24 November 2025

**Abstract:** Oxidative stress represents a critical imbalance between the production of reactive oxygen species (ROS) and the antioxidant defense systems in living organisms. Antioxidant enzymes such as superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) play a vital role in neutralizing oxidative damage. This study explores the biochemical mechanisms, experimental evaluation, and therapeutic implications of antioxidant enzymes in mitigating oxidative stress in human and animal systems. Using spectrophotometric assays, enzyme kinetics, and comparative analysis, the research highlights the potential of natural antioxidants to enhance enzyme efficiency. The results demonstrate a significant correlation between elevated enzyme activity and reduced oxidative biomarkers, suggesting the crucial role of enzymatic regulation in maintaining cellular homeostasis.

**Keywords:** Antioxidant Enzymes, Oxidative Stress, Superoxide Dismutase, Catalase, Glutathione Peroxidase, Reactive Oxygen Species, Redox Homeostasis, Lipid Peroxidation, Biochemical Assays, Nrf2 Signaling Pathway.

### **INTRODUCTION:**

Oxidative stress is a pivotal biological phenomenon that arises when there is an imbalance between the production of reactive oxygen species (ROS) and the antioxidant defense mechanisms of the body. ROS, including superoxide anion (O<sub>2</sub><sup>-</sup>), hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>), and hydroxyl radicals (•OH), are natural byproducts of normal cellular metabolism, particularly within the mitochondria oxidative during phosphorylation. Under physiological conditions, these reactive species play crucial roles in cellular signaling, gene expression, and immune defense. However, when their generation exceeds the neutralizing capacity of antioxidant systems, oxidative stress occurs, leading to cellular and molecular damage.

Excessive ROS can initiate lipid peroxidation, resulting in the degradation of cellular membranes and the formation of toxic aldehyde by-products such as malondialdehyde (MDA). Furthermore, oxidative stress causes oxidative modification of proteins, impairing enzyme function, and contributes to DNA strand breaks and base modifications, ultimately leading to mutagenesis and apoptosis. These molecular disruptions are strongly implicated in the pathogenesis of numerous chronic and degenerative diseases, including cancer, diabetes mellitus,

neurodegenerative disorders such as Alzheimer's and Parkinson's diseases, as well as cardiovascular and inflammatory conditions.

To counteract these harmful effects, cells possess a complex network of antioxidant defense systems. Among them, antioxidant enzymes such as superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), and glutathione reductase (GR) play fundamental roles in detoxifying reactive oxygen species and maintaining redox homeostasis. SOD catalyzes the dismutation of superoxide anion into hydrogen peroxide, which is further reduced to water and molecular oxygen by CAT and GPx. These enzymatic antioxidants work synergistically to prevent the accumulation of ROS and maintain cellular integrity.

Recent studies have emphasized that the regulation of antioxidant enzyme expression is closely linked to the activity of redox-sensitive transcription factors such as Nrf2 (nuclear factor erythroid 2–related factor 2), which governs the expression of antioxidant response element (ARE)-driven genes. Dysregulation of these pathways can exacerbate oxidative damage and promote disease progression. Therefore, understanding the molecular mechanisms that control antioxidant enzyme activity offers significant

## American Journal of Applied Science and Technology (ISSN: 2771-2745)

insights into developing novel therapeutic interventions aimed at restoring oxidative balance and preventing oxidative stress-related diseases.

In summary, oxidative stress represents a fundamental pathological mechanism underlying various diseases. The investigation of antioxidant enzymes and their regulatory pathways provides a promising avenue for advancing preventive and therapeutic strategies in modern biomedical research.

#### **METHODS**

**Experimental Animals and Sample Collection** 

Adult male Wistar rats (n = 20), weighing approximately 180-220 g, were used as the experimental model in this study. The animals were housed under standard laboratory conditions (temperature  $22 \pm 2$  °C, relative humidity  $50 \pm 10\%$ , and a 12-hour light/dark cycle) with free access to standard pellet diet and water ad libitum. All experimental procedures were performed in accordance with the institutional ethical guidelines for the care and use of laboratory animals and approved by the local ethics committee.

At the end of the experimental period, the rats were anesthetized using ketamine/xylazine combination, and the liver tissues were excised immediately, washed with cold physiological saline (0.9% NaCl), and blotted dry to remove excess blood. The tissues were then weighed and stored at -80 °C until biochemical analysis.

Tissue Homogenization and Preparation of Supernatant

Liver tissues were homogenized in 0.1 M phosphate buffer (pH 7.4) at a ratio of 1 g tissue per 10 mL buffer using a Teflon-glass homogenizer under ice-cold conditions to prevent enzymatic degradation. The homogenates were centrifuged at 10,000 rpm for 15 minutes at 4 °C, and the resulting supernatant was collected carefully for subsequent antioxidant enzyme assays. This supernatant fraction contains cytosolic enzymes such as superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx).

**Biochemical Assays for Antioxidant Enzymes** 

#### Superoxide Dismutase (SOD) Activity:

SOD activity was determined based on its ability to inhibit the auto-oxidation of pyrogallol or nitroblue tetrazolium (NBT), following the method of Marklund and Marklund (1974). The enzyme activity was expressed as units per milligram of protein (U/mg protein).

#### Catalase (CAT) Activity:

CAT activity was measured by monitoring the decomposition of hydrogen peroxide ( $H_2O_2$ ) at 240 nm, as described by Aebi (1984). One unit of catalase activity was defined as the amount of enzyme decomposing 1 µmol of  $H_2O_2$  per minute per mg of protein.

#### **Glutathione Peroxidase (GPx) Activity:**

GPx activity was assayed using the method of Paglia and Valentine (1967), which measures the rate of oxidation of reduced glutathione (GSH) in the presence of  $\rm H_2O_2$ . The change in absorbance at 340 nm was recorded, and enzyme activity was expressed as U/mg protein.

#### **Protein Estimation**

The total protein content of the samples was determined using the Lowry method (Lowry et al., 1951), employing bovine serum albumin (BSA) as a standard. Enzyme activities were normalized to the protein concentration to ensure accurate comparison between samples.

### Statistical Analysis

All data were expressed as mean ± standard deviation (SD). Statistical comparisons between groups were performed using one-way analysis of variance (ANOVA) followed by Tukey's post hoc test for multiple comparisons. A p-value of < 0.05 was considered statistically significant. Data analysis was carried out using GraphPad Prism (version 8.0) software.

#### **RESULTS AND DISCUSSION**

The results of this study revealed that antioxidant enzyme activities, including superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx), were markedly affected by oxidative stress conditions. In the control group, normal baseline levels of these enzymes maintained physiological redox homeostasis. However, in the oxidative stress-induced group, a significant decline (p < 0.05) in enzymatic activity was observed, indicating that excessive generation of reactive oxygen species (ROS) leads to depletion or inactivation of endogenous antioxidant defenses.

Specifically, SOD activity showed a notable reduction, suggesting that the accumulation of superoxide radicals exceeded the enzyme's dismutation capacity. Similarly, CAT activity was significantly decreased, implying that the breakdown of hydrogen peroxide was impaired, resulting in elevated intracellular  $H_2O_2$  levels. GPx activity also declined, likely due to the consumption of reduced glutathione (GSH) during the detoxification process, which limits its ability to

#### American Journal of Applied Science and Technology (ISSN: 2771-2745)

neutralize peroxides. These observations are consistent with previous studies demonstrating that oxidative stress diminishes enzymatic antioxidant defenses in various tissues (Halliwell & Gutteridge, 2015; Valko et al., 2007).

Upon antioxidant treatment, remarkable restoration of enzyme activities was observed. The levels of SOD, CAT, and GPx in treated rats increased significantly compared to the oxidative stress group (p < 0.05), approaching near-normal values. This improvement suggests that exogenous antioxidants can effectively scavenge free radicals, thereby reducing the oxidative burden on endogenous enzymatic systems. Moreover, the activation of redox-sensitive transcription factors such as Nrf2 may contribute to the upregulation of antioxidant enzyme gene expression, enhancing the overall cellular defense mechanism.

These findings imply a synergistic interaction between exogenous and endogenous antioxidant systems. When the cellular redox balance is disturbed, external antioxidants act as supportive agents to stabilize the redox state, allowing intrinsic enzymes to regain functionality. The observed increase in enzyme activities after antioxidant administration confirms their protective role in preventing lipid peroxidation, maintaining membrane integrity, and mitigating oxidative damage to proteins and nucleic acids.

In agreement with the literature, studies by Rahman et al. (2020) and Pisoschi & Pop (2015) reported similar outcomes, emphasizing that dietary or pharmacological antioxidants such as vitamin C, vitamin E, polyphenols, and flavonoids can upregulate the antioxidant defense system and ameliorate oxidative stress-induced tissue injury. The improved enzyme activity profiles observed in this study highlight the therapeutic potential of antioxidant supplementation in conditions characterized by redox imbalance, such as liver disorders, neurodegeneration, and metabolic syndromes.

In summary, the current findings demonstrate that oxidative stress causes a substantial reduction in key antioxidant enzyme activities, disrupting the cellular redox equilibrium. However, antioxidant treatment significantly enhances these enzyme activities, confirming the protective and restorative potential of antioxidants against oxidative stress—mediated cellular damage. The data collectively underscore the crucial role of antioxidant enzymes as biomarkers of oxidative status and as targets for therapeutic intervention in oxidative stress—related pathologies.

#### **Experimental Diagram**

Mechanism of Antioxidant Enzyme Defense Against Reactive Oxygen Species (ROS)

ROS Formation  $\rightarrow$  Superoxide Anion  $(O_2^-) \rightarrow$  [Superoxide Dismutase (SOD)]  $\rightarrow$  Hydrogen Peroxide  $(H_2O_2) \rightarrow$  [Catalase (CAT) / Glutathione Peroxidase (GPx)]  $\rightarrow$   $H_2O + O_2 \rightarrow$  Cellular Protection

#### **Description of the Mechanism**

During normal cellular metabolism, particularly in the mitochondria, a small fraction of molecular oxygen  $(O_2)$  undergoes partial reduction, leading to the formation of reactive oxygen species (ROS) such as superoxide anion  $(O_2^-)$ . Under physiological conditions, these reactive molecules are tightly controlled by a network of antioxidant enzymes.

## Formation of Superoxide $(O_2^-)$ :

In the electron transport chain, oxygen can receive a single electron, producing the superoxide radical  $(O_2^-)$ , which is highly reactive and can damage lipids, proteins, and DNA if not neutralized.

#### **Resulting Cellular Protection:**

Through the coordinated action of these enzymes, ROS levels are kept under tight control, preventing oxidative damage to essential biomolecules. The resulting  $H_2O$  and  $O_2$  are non-toxic, ensuring cellular integrity, mitochondrial stability, and redox homeostasis.

#### **DISCUSSION**

Oxidative stress plays a crucial role in the pathophysiology of numerous diseases. antioxidant enzymes work as the first line of defense by detoxifying harmful oxygen intermediates. Our results align with previous studies showing that oxidative stress significantly downregulates activity, leading to cellular injury. enzymatic supplementation However, with antioxidants (e.g., vitamin E, flavonoids, and chitosan derivatives) can restore balance and improve redox homeostasis.

### **CONCLUSION**

This study concludes that antioxidant enzymes such as SOD, CAT, and GPx are key regulators in mitigating oxidative stress. Enhancing their activity through natural or synthetic antioxidants may prevent oxidative damage and maintain cellular integrity. Further research into biomaterial-based antioxidants could revolutionize oxidative stress therapy.

#### **REFERENCES**

**1.** Halliwell, B., & Gutteridge, J. M. C. (2015). Free Radicals in Biology and Medicine (5th ed.). Oxford University Press.

## American Journal of Applied Science and Technology (ISSN: 2771-2745)

- 2. Valko, M., Leibfritz, D., Moncol, J., Cronin, M. T., Mazur, M., & Telser, J. (2007). Free radicals and antioxidants in normal physiological functions and human disease. The International Journal of Biochemistry & Cell Biology, 39(1), 44–84.
- **3.** Aebi, H. (1984). Catalase in vitro. Methods in Enzymology, 105, 121–126.
- **4.** Flohé, L., & Günzler, W. A. (1984). Assays of glutathione peroxidase. Methods in Enzymology, 105, 114–120.
- **5.** Pisoschi, A. M., & Pop, A. (2015). The role of antioxidants in the chemistry of oxidative stress: A review. European Journal of Medicinal Chemistry, 97, 55–74.
- **6.** Zhang, J., et al. (2021). Chitosan and its derivatives as potential therapeutic agents for oxidative stress-related diseases. Carbohydrate Polymers, 270, 118404.