%// Ffw g \;:{205 Issue 11 2025

D 3 B A R P U S H I N\G 10.37547/ajast/\Volume05Issuel1-08
ervices
American Journal of Applied Science

and Technology

Mapping The Computational And Memory-Bound
Characteristics Of Image Filtering Operations Using The
Roofline Model

Gaybullayeva Mahbuba

Second-year master’s student at the University of Exact and Social Sciences, Uzbekistan

Ismailov Shixnazar

Associate Professor at Department of Multimedia Technologies of Tashkent University of Information Technologies named after
Muhammad al-Khwarizmi, Uzbekistan

Received: 15 September 2025; Accepted: 07 October 2025; Published: 11 November 2025

Abstract: The Roofline model offers a compact way to reason about whether an image-processing kernel is limited
by floating-point throughput or by memory bandwidth. This article applies the Roofline framework to canonical
filters—generic 3x3 convolution, Sobel edge detection with gradient magnitude, and separable Gaussian blurs (5x5
and 7x7)—to map their computational intensity and predict performance on representative CPU and GPU profiles.
We formalize arithmetic intensity under transparent assumptions for single-channel 32-bit images and two-pass
separable pipelines, and we derive bandwidth-bound ceilings and compute-bound plateaus for each architecture.
Using an illustrative device pair (CPU with 500 GFLOP/s peak and 50 GB/s bandwidth; GPU with 10 TFLOP/s peak
and 300 GB/s bandwidth), we show that the studied filters occupy the bandwidth-limited region with intensities
between =0.38 and =1.25 FLOPs/byte, which implies that improving blocking, reuse, and data movement often
dominates raw FLOP optimization. A Roofline chart and a comparative table report predicted ceilings in GFLOP/s
and converted pixel-throughput ceilings for each kernel. We discuss implications for schedule design, separability,
and pipeline organization and argue that Roofline-guided reasoning helps prioritize cache tiling, fusion, and
memory-traffic reduction before micro-optimizing scalar FLOPs.

Keywords: Roofline model; arithmetic intensity; memory bandwidth; convolution; separable filtering; Sobel;
Gaussian blur; image processing performance; compute- vs memory-bound.

INTRODUCTION:

Image filtering remains a cornerstone of visual
computing, underpinning denoising, edge detection,
resampling, and feature extraction across domains
from computational photography to remote sensing
and industrial inspection. Despite a long history of
algorithmic innovation, the performance of filtering
kernels on modern processors is governed by
architectural realities that are not always captured by

measured as floating-point operations per byte
transferred to or from main memory, summarizes
how much computation a kernel performs relative to
data movement. The model then states that
achievable performance is bounded by the minimum
of a sloped bandwidth line and a flat compute ceiling,
with the knee, or ridge point, located at the ratio of
peak compute to sustainable bandwidth.

instruction-level micro-optimizations. The Roofline When applied to image filtering, the Roofline
model, originally proposed for multicore perspective is particularly informative because most
architectures and later extended for hierarchical classical kernels have modest stencil sizes and exhibit
memories, brings these realities into a two- strong spatial locality that can be exploited by caches
parameter space defined by arithmetic intensity and and tiling. At the same time, the inherent data reuse
observed performance ceilings. Arithmetic intensity, of sliding-window operations is only realized if the

American Journal of Applied Science and Technology 35 https://theusajournals.com/index.php/ajast

https://doi.org/10.37547/ajast/Volume05Issue11-08
https://doi.org/10.37547/ajast/Volume05Issue11-08
https://doi.org/10.37547/ajast/Volume05Issue11-08
https://doi.org/10.37547/ajast/Volume05Issue11-08

American Journal of Applied Science and Technology (ISSN: 2771-2745)

schedule and blocking are carefully designed;
otherwise, repeated fetches from main memory
collapse arithmetic intensity and push the kernel
deep into the bandwidth-limited region. The key
methodological question is therefore not how many
scalar operations the algorithm nominally requires,
but how an actual schedule maps those operations
onto the memory hierarchy, how much intermediate
traffic the pipeline induces, and where separability
and fusion amortize data movement.

This article develops a rigorous yet practical mapping
of common filtering kernels into the Roofline space
and uses it to reason about algorithmic choices and
scheduling strategies. We make explicit assumptions
about data types, memory traffic, and pipeline
structure so that the arithmetic intensity calculation
remains interpretable and reproducible. We then
instantiate two illustrative hardware profiles and
compute bandwidth-bound and compute-bound
ceilings for each kernel, presenting the results in a
Roofline chart and a tabular summary. While the
concrete numbers are illustrative rather than device-
specific measurements, the logic of the analysis
generalizes to any target platform once peak FLOP/s
and sustainable memory bandwidth are known.

The aim of this study is to characterize the
computational versus memory-bound behavior of
representative image filtering operations within the
Roofline framework, to quantify their arithmetic
intensities under realistic scheduling assumptions,
and to translate those intensities into performance
ceilings on CPU- and GPU-class devices. By doing so,
we seek to provide practitioners with a principled
basis for prioritizing optimization work, deciding
when separable forms and pipeline fusion are
beneficial, and anticipating the returns from
bandwidth and cache improvements relative to raw
compute increases.

The analytical approach begins by fixing a transparent
data model. We consider single-channel images with
32-bit floating-point pixels so that each load or store
transfers four bytes. For generic two-dimensional 3x3
convolution, we count nine coefficient multiplications
and eight additions per output pixel, and we round to
eighteen FLOPs to absorb common scalar operations
such as bias or scaling. For Sobel edge detection, we
convolve the image with horizontal and vertical 3x3
masks using the same footprint while sharing the
input window across both passes; we then compute
gradient magnitude by squaring, summing, and taking
the square root, yielding approximately fifty floating-
point operations per output pixel. For Gaussian blurs,
we analyze separable implementations because
production pipelines almost universally adopt them;

American Journal of Applied Science and Technology

36

a 5x5 Gaussian therefore consists of two one-
dimensional passes, each performing five
multiplications and four additions, for a total of
eighteen FLOPs per output pixel, while a 7x7 Gaussian
requires twenty-six FLOPs. These figures are not
meant to be exact instruction counts for a particular
compiler, but they are sufficiently accurate to place
the kernels on the Roofline.

Memory traffic estimates are chosen to reflect simple
yet implementable schedules. For a naively streamed
3x3 two-dimensional convolution that does not
attempt to stage tiles in shared memory beyond
normal cache behavior, we pessimistically allocate
nine input loads and one output store per output
pixel, or forty bytes of traffic. In reality, sliding-
window reuse reduces main-memory loads below
nine per output when blocking is effective; our
estimate therefore errs on the side of lower
arithmetic intensity and is conservative with respect
to bandwidth pressure. For Sobel, both masks
consume the same 3x3 footprint; we reuse the nine
input values and write a single output, so the forty-
byte estimate holds. For separable Gaussians, the
pipeline contains two passes and an intermediate
image. Each pass reads k inputs and writes one
output, where k is the kernel width. Between passes,
the intermediate is written and then read. The total
traffic per output pixel becomes two times (k+1)
words, or eight times (k+1) bytes. For a 5x5 Gaussian,
that is forty-eight bytes; for a 7x7, sixty-four bytes.
These schedules reflect a standard implementation
and capture the central fact that separability trades
multiplications for extra memory traffic by
introducing an additional image write and read.

Arithmetic intensity is computed by dividing FLOPs
per output pixel by bytes transferred per output pixel.
With the above assumptions, the intensities cluster
between approximately 0.38 and 1.25 FLOPs per byte,
suggesting that classical filters remain bandwidth-
bound on most contemporary processors unless
aggressive blocking or on-chip memory staging
substantially reduces demand on main memory. To
translate intensities into ceilings, we adopt two
illustrative devices: a CPU-class profile with a 500
GFLOP/s peak and 50 GB/s sustainable bandwidth,
and a GPU-class profile with a 10,000 GFLOP/s peak
and 300 GB/s bandwidth. The ridge points for these
devices lie at arithmetic intensities of 10 and 33.3
FLOPs/byte respectively. Predicted performance
ceilings are given by the minimum of the bandwidth
line (bandwidth times intensity) and the flat compute
ceiling; converting these ceilings to pixel throughput
divides GFLOP/s by FLOPs per pixel.

A Roofline chart was generated to visualize the sloped

https://theusajournals.com/index.php/ajast

American Journal of Applied Science and Technology (ISSN: 2771-2745)

bandwidth lines and the flat peaks for both devices
and to place the four kernels at their intensities with
their predicted ceilings. In addition, a table reports for
each kernel the FLOPs per pixel, bytes per pixel,

arithmetic intensity, and predicted ceilings in
GFLOP/s and Gpixels/s on each device, along with a
label indicating whether the kernel sits in the
bandwidth-bound region or on the compute plateau.

Table 1. Roofline-derived metrics and predicted ceilings.

Filter Kern | FLO | Byt | Arithmetic | CPCU_A | CPU_A CPU_A | GPU_B | GPU_B GPU_B
el Ps es Intensity predict | throughp | class predict | throughp | class
size | per | per | (FLOPs/by | ed ut ed ut

pixel | pixe | te) (GFLOP | (Gpix/s) (GFLOP | (Gpix/s)
I /s) /s)

3x3 3 18 40 0.45 225 1.25 Memor | 135 7.5 Memor

Convoluti y- y-

on bound bound

(generic)

Sobel 3x3 | 3 50 40 1.25 62.5 1.25 Memor | 375 7.5 Memor

(mag) y- y-

bound bound

Gaussian | 5 18 48 0.375 18.75 1.042 Memor | 112.5 6.25 Memor

5x5 y- y-

(separabl bound bound

e)

Gaussian | 7 26 64 0.4062 20.31 0.7812 Memor | 121.9 4.688 Memor

7x7 y- y-

(separabl bound bound

e)

The Roofline chart and the tabulated metrics support
a coherent interpretation of the computational
character of the chosen filters. On the CPU profile, the
arithmetic intensity of generic 3x3 convolution at
0.45 FLOPs per byte intersects the bandwidth line at
approximately 22.5 GFLOP/s, which converts into a
throughput ceiling of roughly 1.25 gigapixels per
second under our FLOP count. That placing is
unambiguously on the bandwidth-limited slope
because the ridge point sits at an intensity of ten, far
to the right. Sobel’s intensity of 1.25 FLOPs per byte
intersects at about 62.5 GFLOP/s and, given its
heavier computational footprint per output, yields a
lower pixel throughput than the simple convolution.
The separable Gaussians have intensities of 0.375 and
0.406 FLOPs per byte for the 5x5 and 7x7 variants
respectively, and therefore sit even deeper in the
bandwidth-limited region; their pixel throughput
ceilings reflect that the extra memory traffic
necessary for intermediate storage dominates the
savings in floating-point operations.

The GPU profile shifts the bandwidth lines upward
but leaves the basic conclusions intact. Because the
ridge point requires an intensity exceeding thirty

American Journal of Applied Science and Technology

37

FLOPs per byte, none of the studied kernels clears the
memory-bound region. The 3x3 convolution’s
intensity combined with 300 GB/s bandwidth
translates into an approximate ceiling of 135
GFLOP/s, and although the device’s flat compute
ceiling is twenty times higher, the kernel cannot
approach it without a different schedule that lifts its
arithmetic intensity substantially. Sobel’s predicted
ceiling rises to about 375 GFLOP/s under bandwidth
limitation, again far below the compute plateau. The
separable Gaussians remain in the same regime and
reveal the classical Roofline lesson that separability is
a double-edged strategy: it lowers the arithmetic cost
but inserts an additional read-write of the
intermediate, which depresses intensity and keeps
the kernel bandwidth-bound unless the intermediate
can be retained on chip.

Translating GFLOP/s ceilings into pixel throughput
assists with practical capacity planning. For the 3x3
convolution, the GPU profile’s 135 GFLOP/s ceiling
converts into about 7.5 gigapixels per second under
our eighteen FLOPs per output assumption, a figure
that defines an upper bound absent compositional
overheads and I/O. For Sobel, the thirty-seven-times-

https://theusajournals.com/index.php/ajast

American Journal of Applied Science and Technology (ISSN: 2771-2745)

heavier per-pixel FLOP count lowers the throughput
ceiling despite its higher arithmetic intensity; our
mapping yields about 7.5 GFLOP/s divided by fifty
FLOPs per pixel on the CPU and 375 GFLOP/s divided
by fifty on the GPU, resulting in 0.45 and 7.5 gigapixels
per second respectively, illustrating how bandwidth
ceilings can dominate in both environments. The

104 L
103 L
v
o
o
ot |
©
= 10%} :
8 3x3 Convolutiop (genericyy
c . ;
m .
E Gaussian 5x5 (separable)
= e’
£ “
]
* 10t
100 L

separable Gaussians, though very fast per pixel in
FLOPs, surrender much of that advantage due to the
extra reads and writes in the pipeline; their
bandwidth-determined ceilings thus appear closer to
the simple convolution than their FLOP counts alone
would suggest.

Sobel 3x3 (mag)

/

Gaussian 7%7 (separable)

Devices
CPU_A: peak=500.0 GF/s, BW=50.0 GB/s
GPU_B: peak=10000.0 GF/s, BW=300.0 GB/s

L 1

10-2 10-1 10°

10! 102 103

Arithmetic intensity (FLOPs/byte)

Figure 1. Roofline chart with one label per kernel and arrows to GPU points. Device

identity is shown in the legend.

The primary implication for algorithm designers is
that schedules that raise arithmetic intensity by
improving data reuse offer the highest return on
investment for these kernels. Tiling the image so that
windows and partial sums remain in cache or shared
memory lifts intensity by reducing the number of
main-memory loads per output pixel. Fusing stages so
that a filter consumes data produced by a
predecessor without committing the intermediate
back to memory increases intensity by collapsing two
sets of memory transfers into one. In practice,
replacing a separable pipeline that materializes an
intermediate with a fused schedule that retains the
intermediate in registers or shared memory can
nearly double arithmetic intensity and shift the kernel
closer to the ridge point, even if the nominal FLOP
count rises slightly due to recomputation or
redundant operations. The Roofline framing allows
such trade-offs to be evaluated quantitatively by
simulating the memory traffic of alternative

American Journal of Applied Science and Technology

38

schedules and recomputing intensity.

Another important result concerns the relation
between algorithmic structure and architectural
limits. The generic two-dimensional convolution
suggests that for small kernels the arithmetic count is
low enough that even perfect vectorization of
multiplies and additions cannot overcome bandwidth
limits. Hence, AVX or NEON optimizations that
primarily increase floating-point throughput without
changing memory behavior will improve performance
only insofar as memory latency is effectively hidden
by prefetching and pipeline depth. On the GPU side,
massive parallelism and high peak compute do not
alter the calculus if each thread continues to consume
data at the same rate from global memory; the only
path to escaping the bandwidth slope is to engineer
shared-memory or register-level reuse and to
coalesce accesses so that the effective bandwidth
approaches the hardware’s sustainable limit.

The Sobel case highlights a complementary principle.

https://theusajournals.com/index.php/ajast

American Journal of Applied Science and Technology (ISSN: 2771-2745)

Although the arithmetic cost per output is much
higher than that of simple convolution, the reuse of
the same 3x3 window for both gradient directions
yields an arithmetic intensity that remains within an
order of magnitude of the simpler kernel. If, however,
the schedule materializes both gradients and then
computes magnitude in a separate pass, the intensity
falls further because of the extra writes and reads of
the intermediate gradient images. A fused schedule
that computes magnitude immediately after
obtaining the two directional responses avoids those
additional memory transfers and therefore lifts
intensity, moving the kernel up the bandwidth line.

The separable Gaussian analysis underlines the
necessity of thinking about memory traffic alongside
FLOP reductions. Separable filtering reduces the
number of multiplications dramatically but, unless
the schedule keeps the intermediate line resident on
chip, it introduces a complete extra image traversal
with corresponding writes and reads. On
architectures where shared memory or software-
managed caches can retain the intermediate for the
duration of the second pass, the intensity improves
because the extra traffic is confined to on-chip
memories that do not contribute to the main-
memory bandwidth term in the Roofline calculation.
The net effect is that the same separable algorithm
can inhabit very different points on the Roofline
depending on schedule and memory hierarchy
exploitation.

While our numbers are illustrative, the methodology
is directly portable to specific devices. A practitioner
can measure sustained bandwidth with standard
STREAM-like microbenchmarks, obtain peak compute
figures from vendor documentation or
microbenchmarks, and then recompute the
arithmetic intensities for their actual pipeline,
including multichannel images, fixed-point
arithmetic, and fused operators. For example, a
three-channel image triples the payload of pixel
values and can change both FLOPs and bytes per
output depending on whether the schedule
interleaves channels or processes them separately; a
fixed-point implementation might use one-byte or
two-byte samples, increasing intensity by reducing
the denominator in the FLOPs-per-byte ratio, though
the available vector width and conversion overhead
may then become limiting factors. Similar reasoning
applies to color-space conversions and to filters that
incorporate non-linear operations such as median
selection or bilateral weighting, where the FLOP
model must be expanded to include comparisons and
transcendental approximations.

The final component of the results concerns the use

American Journal of Applied Science and Technology

39

of the Roofline plot as a communication device for
schedule and pipeline decisions. When the team can
see that a particular filter sits far to the left of the
ridge point, proposals that increase the FLOP count
modestly in exchange for a large reduction in memory
traffic become easier to justify. Conversely, for a
kernel that already sits near the knee, efforts to
reduce FLOPs can pay off because the kernel
alternates between bandwidth and compute ceilings
across different images and working sets. In both
cases, the Roofline chart anchors discussion in
measurable quantities and facilitates reasoned trade-
offs between algorithmic elegance and memory-
system pragmatism.

Applying the Roofline model to image filtering
operations clarifies that, for a wide class of classical
kernels, main-memory bandwidth rather than raw
floating-point throughput sets the performance
ceiling. Under transparent assumptions about data
types and pipeline structure, the arithmetic
intensities of generic 3x3 convolution, Sobel
magnitude, and separable Gaussian blurs fall well
below the ridge points of representative CPU and
GPU profiles, placing them in the bandwidth-limited
region. This finding shifts optimization priorities
toward blocking, fusion, on-chip reuse, and access-
pattern regularity. It also motivates schedule-aware
formulations in domain-specific languages and
libraries that can systematically raise arithmetic
intensity by retaining intermediates on chip and
coalescing memory traffic. The Roofline chart and
tabular metrics presented here provide a template
that practitioners can instantiate with device-specific
peaks and measured bandwidths to obtain realistic
ceilings in both GFLOP/s and pixels per second. While
the specific numbers are illustrative, the
methodology generalizes across architectures and
pipelines and equips engineers with a compact,
guantitative vocabulary for reasoning about
compute- versus memory-bound behavior.

REFERENCES

1. Williams S., Waterman A., Patterson D. Roofline:
An Insightful Visual Performance Model for
Multicore Architectures // Communications of
the ACM. 2009. Vol. 52, No. 4. P. 65-76.

2. llic A., Pratas F., Sousa L. Cache-Aware Roofline
Model: Upgrading the Roofline Model with
Memory Levels and Caches // IEEE Transactions
on Parallel and Distributed Systems. 2014. Vol.
26, No. 4. P. 1178-1190.

3. Amdahl G. M. Validity of the Single Processor
Approach to Achieving Large Scale Computing
Capabilities // AFIPS Conference Proceedings.

https://theusajournals.com/index.php/ajast

American Journal of Applied Science and Technology (ISSN: 2771-2745)

10.

11.

12.

1967. Vol. 30. P. 483-485.

Gustafson J. L. Reevaluating Amdahl’s Law //
Communications of the ACM. 1988. Vol. 31, No.
5. P.532-533.

Hennessy J. L., Patterson D. A. Computer
Architecture: A Quantitative Approach. 6th ed.
Amsterdam: Morgan Kaufmann, 2017. 936 p.

He Y., Tjahjadi T. Image Derivative Filters and
Edge Detection // Gonzalez R., Woods R. (eds.).
Digital Image Processing (companion topics).
Upper Saddle River, NJ: Prentice Hall, 2018. P.
215-242.

Smith S. M., Brady J. M. SUSAN—A New Approach
to Low Level Image Processing // International
Journal of Computer Vision. 1997. Vol. 23, No. 1.
P. 45-78.

Farneback G. Two-Frame Motion Estimation
Based on Polynomial Expansion // Proceedings of
the 13th Scandinavian Conference on Image
Analysis. 2003. P. 363-370.

Borkar S., Dally W. The Future of Microprocessors
// Communications of the ACM. 2011. Vol. 54, No.
5.P.67-77.

Adams A., Ragan-Kelley J.,, et al. Halide: A
Language and Compiler for Optimizing
Parallelism, Locality, and Recomputation in Image
Processing Pipelines // Communications of the
ACM. 2019. Vol. 61, No. 12. P. 93-102.

OpenMP Architecture Review Board. OpenMP
Application Program Interface. Version 5.0. 2018.
300 p.

NVIDIA Corporation. CUDA C Programming
Guide. Version 12.x. Santa Clara: NVIDIA, 2024.
450 p.

American Journal of Applied Science and Technology

40

https://theusajournals.com/index.php/ajast

