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Abstract: The Roofline model offers a compact way to reason about whether an image-processing kernel is limited 
by floating-point throughput or by memory bandwidth. This article applies the Roofline framework to canonical 
filters—generic 3×3 convolution, Sobel edge detection with gradient magnitude, and separable Gaussian blurs (5×5 
and 7×7)—to map their computational intensity and predict performance on representative CPU and GPU profiles. 
We formalize arithmetic intensity under transparent assumptions for single-channel 32-bit images and two-pass 
separable pipelines, and we derive bandwidth-bound ceilings and compute-bound plateaus for each architecture. 
Using an illustrative device pair (CPU with 500 GFLOP/s peak and 50 GB/s bandwidth; GPU with 10 TFLOP/s peak 
and 300 GB/s bandwidth), we show that the studied filters occupy the bandwidth-limited region with intensities 
between ≈0.38 and ≈1.25 FLOPs/byte, which implies that improving blocking, reuse, and data movement often 
dominates raw FLOP optimization. A Roofline chart and a comparative table report predicted ceilings in GFLOP/s 
and converted pixel-throughput ceilings for each kernel. We discuss implications for schedule design, separability, 
and pipeline organization and argue that Roofline-guided reasoning helps prioritize cache tiling, fusion, and 
memory-traffic reduction before micro-optimizing scalar FLOPs. 

 

Keywords: Roofline model; arithmetic intensity; memory bandwidth; convolution; separable filtering; Sobel; 
Gaussian blur; image processing performance; compute- vs memory-bound. 

 
INTRODUCTION:

Image filtering remains a cornerstone of visual 
computing, underpinning denoising, edge detection, 
resampling, and feature extraction across domains 
from computational photography to remote sensing 
and industrial inspection. Despite a long history of 
algorithmic innovation, the performance of filtering 
kernels on modern processors is governed by 
architectural realities that are not always captured by 
instruction-level micro-optimizations. The Roofline 
model, originally proposed for multicore 
architectures and later extended for hierarchical 
memories, brings these realities into a two-
parameter space defined by arithmetic intensity and 
observed performance ceilings. Arithmetic intensity, 

measured as floating-point operations per byte 
transferred to or from main memory, summarizes 
how much computation a kernel performs relative to 
data movement. The model then states that 
achievable performance is bounded by the minimum 
of a sloped bandwidth line and a flat compute ceiling, 
with the knee, or ridge point, located at the ratio of 
peak compute to sustainable bandwidth. 

When applied to image filtering, the Roofline 
perspective is particularly informative because most 
classical kernels have modest stencil sizes and exhibit 
strong spatial locality that can be exploited by caches 
and tiling. At the same time, the inherent data reuse 
of sliding-window operations is only realized if the 
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schedule and blocking are carefully designed; 
otherwise, repeated fetches from main memory 
collapse arithmetic intensity and push the kernel 
deep into the bandwidth-limited region. The key 
methodological question is therefore not how many 
scalar operations the algorithm nominally requires, 
but how an actual schedule maps those operations 
onto the memory hierarchy, how much intermediate 
traffic the pipeline induces, and where separability 
and fusion amortize data movement. 

This article develops a rigorous yet practical mapping 
of common filtering kernels into the Roofline space 
and uses it to reason about algorithmic choices and 
scheduling strategies. We make explicit assumptions 
about data types, memory traffic, and pipeline 
structure so that the arithmetic intensity calculation 
remains interpretable and reproducible. We then 
instantiate two illustrative hardware profiles and 
compute bandwidth-bound and compute-bound 
ceilings for each kernel, presenting the results in a 
Roofline chart and a tabular summary. While the 
concrete numbers are illustrative rather than device-
specific measurements, the logic of the analysis 
generalizes to any target platform once peak FLOP/s 
and sustainable memory bandwidth are known. 

The aim of this study is to characterize the 
computational versus memory-bound behavior of 
representative image filtering operations within the 
Roofline framework, to quantify their arithmetic 
intensities under realistic scheduling assumptions, 
and to translate those intensities into performance 
ceilings on CPU- and GPU-class devices. By doing so, 
we seek to provide practitioners with a principled 
basis for prioritizing optimization work, deciding 
when separable forms and pipeline fusion are 
beneficial, and anticipating the returns from 
bandwidth and cache improvements relative to raw 
compute increases. 

The analytical approach begins by fixing a transparent 
data model. We consider single-channel images with 
32-bit floating-point pixels so that each load or store 
transfers four bytes. For generic two-dimensional 3×3 
convolution, we count nine coefficient multiplications 
and eight additions per output pixel, and we round to 
eighteen FLOPs to absorb common scalar operations 
such as bias or scaling. For Sobel edge detection, we 
convolve the image with horizontal and vertical 3×3 
masks using the same footprint while sharing the 
input window across both passes; we then compute 
gradient magnitude by squaring, summing, and taking 
the square root, yielding approximately fifty floating-
point operations per output pixel. For Gaussian blurs, 
we analyze separable implementations because 
production pipelines almost universally adopt them; 

a 5×5 Gaussian therefore consists of two one-
dimensional passes, each performing five 
multiplications and four additions, for a total of 
eighteen FLOPs per output pixel, while a 7×7 Gaussian 
requires twenty-six FLOPs. These figures are not 
meant to be exact instruction counts for a particular 
compiler, but they are sufficiently accurate to place 
the kernels on the Roofline. 

Memory traffic estimates are chosen to reflect simple 
yet implementable schedules. For a naïvely streamed 
3×3 two-dimensional convolution that does not 
attempt to stage tiles in shared memory beyond 
normal cache behavior, we pessimistically allocate 
nine input loads and one output store per output 
pixel, or forty bytes of traffic. In reality, sliding-
window reuse reduces main-memory loads below 
nine per output when blocking is effective; our 
estimate therefore errs on the side of lower 
arithmetic intensity and is conservative with respect 
to bandwidth pressure. For Sobel, both masks 
consume the same 3×3 footprint; we reuse the nine 
input values and write a single output, so the forty-
byte estimate holds. For separable Gaussians, the 
pipeline contains two passes and an intermediate 
image. Each pass reads k inputs and writes one 
output, where k is the kernel width. Between passes, 
the intermediate is written and then read. The total 
traffic per output pixel becomes two times (k+1) 
words, or eight times (k+1) bytes. For a 5×5 Gaussian, 
that is forty-eight bytes; for a 7×7, sixty-four bytes. 
These schedules reflect a standard implementation 
and capture the central fact that separability trades 
multiplications for extra memory traffic by 
introducing an additional image write and read. 

Arithmetic intensity is computed by dividing FLOPs 
per output pixel by bytes transferred per output pixel. 
With the above assumptions, the intensities cluster 
between approximately 0.38 and 1.25 FLOPs per byte, 
suggesting that classical filters remain bandwidth-
bound on most contemporary processors unless 
aggressive blocking or on-chip memory staging 
substantially reduces demand on main memory. To 
translate intensities into ceilings, we adopt two 
illustrative devices: a CPU-class profile with a 500 
GFLOP/s peak and 50 GB/s sustainable bandwidth, 
and a GPU-class profile with a 10,000 GFLOP/s peak 
and 300 GB/s bandwidth. The ridge points for these 
devices lie at arithmetic intensities of 10 and 33.3 
FLOPs/byte respectively. Predicted performance 
ceilings are given by the minimum of the bandwidth 
line (bandwidth times intensity) and the flat compute 
ceiling; converting these ceilings to pixel throughput 
divides GFLOP/s by FLOPs per pixel. 

A Roofline chart was generated to visualize the sloped 
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bandwidth lines and the flat peaks for both devices 
and to place the four kernels at their intensities with 
their predicted ceilings. In addition, a table reports for 
each kernel the FLOPs per pixel, bytes per pixel, 

arithmetic intensity, and predicted ceilings in 
GFLOP/s and Gpixels/s on each device, along with a 
label indicating whether the kernel sits in the 
bandwidth-bound region or on the compute plateau. 

 

Table 1. Roofline-derived metrics and predicted ceilings. 

Filter Kern
el 
size 

FLO
Ps 
per 
pixel 

Byt
es 
per 
pixe
l 

Arithmetic 
Intensity 
(FLOPs/by
te) 

CPU_A 
predict
ed 
(GFLOP
/s) 

CPU_A 
throughp
ut 
(Gpix/s) 

CPU_A 
class 

GPU_B 
predict
ed 
(GFLOP
/s) 

GPU_B 
throughp
ut 
(Gpix/s) 

GPU_B 
class 

3x3 
Convoluti
on 
(generic) 

3 18 40 0.45 22.5 1.25 Memor
y-
bound 

135 7.5 Memor
y-
bound 

Sobel 3x3 
(mag) 

3 50 40 1.25 62.5 1.25 Memor
y-
bound 

375 7.5 Memor
y-
bound 

Gaussian 
5x5 
(separabl
e) 

5 18 48 0.375 18.75 1.042 Memor
y-
bound 

112.5 6.25 Memor
y-
bound 

Gaussian 
7x7 
(separabl
e) 

7 26 64 0.4062 20.31 0.7812 Memor
y-
bound 

121.9 4.688 Memor
y-
bound 

The Roofline chart and the tabulated metrics support 
a coherent interpretation of the computational 
character of the chosen filters. On the CPU profile, the 
arithmetic intensity of generic 3×3 convolution at 
0.45 FLOPs per byte intersects the bandwidth line at 
approximately 22.5 GFLOP/s, which converts into a 
throughput ceiling of roughly 1.25 gigapixels per 
second under our FLOP count. That placing is 
unambiguously on the bandwidth-limited slope 
because the ridge point sits at an intensity of ten, far 
to the right. Sobel’s intensity of 1.25 FLOPs per byte 
intersects at about 62.5 GFLOP/s and, given its 
heavier computational footprint per output, yields a 
lower pixel throughput than the simple convolution. 
The separable Gaussians have intensities of 0.375 and 
0.406 FLOPs per byte for the 5×5 and 7×7 variants 
respectively, and therefore sit even deeper in the 
bandwidth-limited region; their pixel throughput 
ceilings reflect that the extra memory traffic 
necessary for intermediate storage dominates the 
savings in floating-point operations. 

The GPU profile shifts the bandwidth lines upward 
but leaves the basic conclusions intact. Because the 
ridge point requires an intensity exceeding thirty 

FLOPs per byte, none of the studied kernels clears the 
memory-bound region. The 3×3 convolution’s 
intensity combined with 300 GB/s bandwidth 
translates into an approximate ceiling of 135 
GFLOP/s, and although the device’s flat compute 
ceiling is twenty times higher, the kernel cannot 
approach it without a different schedule that lifts its 
arithmetic intensity substantially. Sobel’s predicted 
ceiling rises to about 375 GFLOP/s under bandwidth 
limitation, again far below the compute plateau. The 
separable Gaussians remain in the same regime and 
reveal the classical Roofline lesson that separability is 
a double-edged strategy: it lowers the arithmetic cost 
but inserts an additional read-write of the 
intermediate, which depresses intensity and keeps 
the kernel bandwidth-bound unless the intermediate 
can be retained on chip. 

Translating GFLOP/s ceilings into pixel throughput 
assists with practical capacity planning. For the 3×3 
convolution, the GPU profile’s 135 GFLOP/s ceiling 
converts into about 7.5 gigapixels per second under 
our eighteen FLOPs per output assumption, a figure 
that defines an upper bound absent compositional 
overheads and I/O. For Sobel, the thirty-seven-times-
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heavier per-pixel FLOP count lowers the throughput 
ceiling despite its higher arithmetic intensity; our 
mapping yields about 7.5 GFLOP/s divided by fifty 
FLOPs per pixel on the CPU and 375 GFLOP/s divided 
by fifty on the GPU, resulting in 0.45 and 7.5 gigapixels 
per second respectively, illustrating how bandwidth 
ceilings can dominate in both environments. The 

separable Gaussians, though very fast per pixel in 
FLOPs, surrender much of that advantage due to the 
extra reads and writes in the pipeline; their 
bandwidth-determined ceilings thus appear closer to 
the simple convolution than their FLOP counts alone 
would suggest. 

 

Figure 1. Roofline chart with one label per kernel and arrows to GPU points. Device 

identity is shown in the legend. 

The primary implication for algorithm designers is 
that schedules that raise arithmetic intensity by 
improving data reuse offer the highest return on 
investment for these kernels. Tiling the image so that 
windows and partial sums remain in cache or shared 
memory lifts intensity by reducing the number of 
main-memory loads per output pixel. Fusing stages so 
that a filter consumes data produced by a 
predecessor without committing the intermediate 
back to memory increases intensity by collapsing two 
sets of memory transfers into one. In practice, 
replacing a separable pipeline that materializes an 
intermediate with a fused schedule that retains the 
intermediate in registers or shared memory can 
nearly double arithmetic intensity and shift the kernel 
closer to the ridge point, even if the nominal FLOP 
count rises slightly due to recomputation or 
redundant operations. The Roofline framing allows 
such trade-offs to be evaluated quantitatively by 
simulating the memory traffic of alternative 

schedules and recomputing intensity. 

Another important result concerns the relation 
between algorithmic structure and architectural 
limits. The generic two-dimensional convolution 
suggests that for small kernels the arithmetic count is 
low enough that even perfect vectorization of 
multiplies and additions cannot overcome bandwidth 
limits. Hence, AVX or NEON optimizations that 
primarily increase floating-point throughput without 
changing memory behavior will improve performance 
only insofar as memory latency is effectively hidden 
by prefetching and pipeline depth. On the GPU side, 
massive parallelism and high peak compute do not 
alter the calculus if each thread continues to consume 
data at the same rate from global memory; the only 
path to escaping the bandwidth slope is to engineer 
shared-memory or register-level reuse and to 
coalesce accesses so that the effective bandwidth 
approaches the hardware’s sustainable limit. 

The Sobel case highlights a complementary principle. 
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Although the arithmetic cost per output is much 
higher than that of simple convolution, the reuse of 
the same 3×3 window for both gradient directions 
yields an arithmetic intensity that remains within an 
order of magnitude of the simpler kernel. If, however, 
the schedule materializes both gradients and then 
computes magnitude in a separate pass, the intensity 
falls further because of the extra writes and reads of 
the intermediate gradient images. A fused schedule 
that computes magnitude immediately after 
obtaining the two directional responses avoids those 
additional memory transfers and therefore lifts 
intensity, moving the kernel up the bandwidth line. 

The separable Gaussian analysis underlines the 
necessity of thinking about memory traffic alongside 
FLOP reductions. Separable filtering reduces the 
number of multiplications dramatically but, unless 
the schedule keeps the intermediate line resident on 
chip, it introduces a complete extra image traversal 
with corresponding writes and reads. On 
architectures where shared memory or software-
managed caches can retain the intermediate for the 
duration of the second pass, the intensity improves 
because the extra traffic is confined to on-chip 
memories that do not contribute to the main-
memory bandwidth term in the Roofline calculation. 
The net effect is that the same separable algorithm 
can inhabit very different points on the Roofline 
depending on schedule and memory hierarchy 
exploitation. 

While our numbers are illustrative, the methodology 
is directly portable to specific devices. A practitioner 
can measure sustained bandwidth with standard 
STREAM-like microbenchmarks, obtain peak compute 
figures from vendor documentation or 
microbenchmarks, and then recompute the 
arithmetic intensities for their actual pipeline, 
including multichannel images, fixed-point 
arithmetic, and fused operators. For example, a 
three-channel image triples the payload of pixel 
values and can change both FLOPs and bytes per 
output depending on whether the schedule 
interleaves channels or processes them separately; a 
fixed-point implementation might use one-byte or 
two-byte samples, increasing intensity by reducing 
the denominator in the FLOPs-per-byte ratio, though 
the available vector width and conversion overhead 
may then become limiting factors. Similar reasoning 
applies to color-space conversions and to filters that 
incorporate non-linear operations such as median 
selection or bilateral weighting, where the FLOP 
model must be expanded to include comparisons and 
transcendental approximations. 

The final component of the results concerns the use 

of the Roofline plot as a communication device for 
schedule and pipeline decisions. When the team can 
see that a particular filter sits far to the left of the 
ridge point, proposals that increase the FLOP count 
modestly in exchange for a large reduction in memory 
traffic become easier to justify. Conversely, for a 
kernel that already sits near the knee, efforts to 
reduce FLOPs can pay off because the kernel 
alternates between bandwidth and compute ceilings 
across different images and working sets. In both 
cases, the Roofline chart anchors discussion in 
measurable quantities and facilitates reasoned trade-
offs between algorithmic elegance and memory-
system pragmatism. 

Applying the Roofline model to image filtering 
operations clarifies that, for a wide class of classical 
kernels, main-memory bandwidth rather than raw 
floating-point throughput sets the performance 
ceiling. Under transparent assumptions about data 
types and pipeline structure, the arithmetic 
intensities of generic 3×3 convolution, Sobel 
magnitude, and separable Gaussian blurs fall well 
below the ridge points of representative CPU and 
GPU profiles, placing them in the bandwidth-limited 
region. This finding shifts optimization priorities 
toward blocking, fusion, on-chip reuse, and access-
pattern regularity. It also motivates schedule-aware 
formulations in domain-specific languages and 
libraries that can systematically raise arithmetic 
intensity by retaining intermediates on chip and 
coalescing memory traffic. The Roofline chart and 
tabular metrics presented here provide a template 
that practitioners can instantiate with device-specific 
peaks and measured bandwidths to obtain realistic 
ceilings in both GFLOP/s and pixels per second. While 
the specific numbers are illustrative, the 
methodology generalizes across architectures and 
pipelines and equips engineers with a compact, 
quantitative vocabulary for reasoning about 
compute- versus memory-bound behavior. 
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