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Abstract: In this paper, reaction-diffusion processes described by nonlinear parabolic equations with a source term
are modeled. Using a self-similar (automodel) approach, the differential equation is simplified, and an initial
approximation is constructed to obtain a numerical solution. During the computation, an appropriate difference
scheme is selected, and the stability and convergence properties are analyzed. The results obtained through
computer simulations are presented graphically and evaluated in terms of how well they reflect the dynamics of
the physical processes. The proposed approach is shown to be effective for obtaining numerical solutions to such
models.
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We consider the Cauchy problem for a divergence-form doubly nonlinear parabolic equation with a source and

qg.m.nk.p.q,

variable density, where are numerical parameters characterizing the nonlinear medium, and

ult.x)=0

is the unknown solution.

Equation (1) describes nonlinear heat conduction, diffusion, filtration, biological population dynamics,
and various other processes [1-10].

American Journal of Applied Science and Technology 218 https://theusajournals.com/index.php/ajast


https://doi.org/10.37547/ajast/Volume05Issue10-38
https://doi.org/10.37547/ajast/Volume05Issue10-38
https://doi.org/10.37547/ajast/Volume05Issue10-38
https://doi.org/10.37547/ajast/Volume05Issue10-38

American Journal of Applied Science and Technology (ISSN: 2771-2745)

(1) is in divergence form; therefore, in regions where ¥ = 0 or Vu=0 the equation becomes
degenerate and may fail to have a classical solution. In such cases one seeks and studies weak (generalized)
solutions of (1). Accordingly, we regard its solution as a generalized one in the class

5“.% #-1 ﬁffn
Osu|—| —C(O)
e

and (1) is satisfied in the sense of an integral identity.

m=1Lp=2.g=0

For equation (1) was proposed by L. Leibenson [16] to describe oil-and-gas

=2.4,=0,g=0
processes. For p a q it models phenomena in a porous medium and other processes.. For

9 = it represents the Hamilton—Jacobi equation [1-5].

(1), (2) The existence and uniqueness of solutions to the Cauchy problem for various specific values of the
parameters have been studied in [6—-20]. In the work of A. A. Samarskii and I. M. Sobol’ [15], numerical solutions
were considered for the parameter values m=1.p=2.q=0 . In papers by H. Fujita, Daniela Giachetti, and

M. Michaela Porzio, the global solvability of the Cauchy problem for nonlinear parabolic equations was
investigated. In Huashui Zhan’s work, properties of solutions to the nonlinear diffusion equation with a damping
term were studied. The non-divergence case of problems (1), (2) can be found in [20].

METHODOLOGY

u(t.x)
We seek the solution in the form:

ult,x)=ult)=(r(r).ollx]).

are defined as below, and

ult)=(T +(1- ql)r]ﬁ .
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we defined in the following form:
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Then we reduced equation (1) to the following “radially symmetric” form.
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(4) we reduce the equation to a self-similar equation by the substitution
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here is the self-similar variable and is the

self-similar function.
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Below, we consider the nontrivial, nonnegative solutions of equation (5) that satisfy the following
conditions:

fl0)=M. M<eR. fld)=0.0<d <= o

Next, using the method of comparing solutions [1] and the method of model (reference) equations [3],
we obtain estimates for the solution of problem (1), (2).

g, <m+k(p-2)

Theorem 1. Suppose the inequality holds, and one of the inequalities

Ng<l.p>n+1
2)g>Lp<n+1
3)g<l.p<n+q

4)g=lp>n+q @)

u(0.x)<u (0.x).x <R o,
an

. Then problem (1), (2) has a global solution in the domain

And suppose
the following upper estimate holds:

ult.x) =u,(f.x)

where:
N
u_(t.x)=Al a— (;}[:'} | | ult),
rf ) )i
.-' k] =11
m+p+k(p-2)-1 -
= 1 a=cm1.5'r:=-ﬂ.;fl=i.;.f1= p-1
plpk™ - p—-1"7" m+k(p-2)-1
L(u_(t.x)) Ll (t,x))= L (e (2.x))+ L,(2 (2,x))
Proof. We represent as the sum and prove
Theorem 1. Here
d (s dr) 14, .
L(u.(t.x))= . ‘J: }: [+ —— £ f)
ds | |dS dg ) P dg
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We will show that when - To do this, we proceed as follows: first, we
L (u_(t.x))=0 L,(u.(r.x))= 0

calculate and then prove that

Now let us consider the following equation:

a1 d
dz| dz ) pdz

L. ()= 2 [ (£-f)=0

ds

The solution of this differential equation is as follows:
1
1

f[é’)=d[fr—é"”‘

L(u(t.x))z0

Now we prove that, under the assumptions of Theorem 1, the inequality ~ holds.
Indeed,

i
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L(u (t.x))=0 L (u (t.%))

Since we can rewrite as:
s | pds

d
ds
L, (o, (1)
Substituting this relation into gives:
/ g
f[—i— ! ]+ ! =0.
p m+k(p-2)-¢q,) m+k(p-2)-q)

df k
ds

72 )
A )

y B<m+k(p-2)

and one of the inequalities (2) or (7) is satisfied, then the following inequality holds.

B 1-q 1 fe
[(P—ﬂ—q]+m+k[p—2]—ql]+ =0

m+k(p-2)—gq,

u(t.x)<u (t.x)
Relying on the comparison theorem, we showed that the estimate is valid in the
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domain . Therefore, Theorem 1 is proved.

From problem (1) we obtain the following one-dimensional nonlinear heat-diffusion equation with initial
and boundary conditions.

(1) masaladan biz boshlang‘ich va chegaraviy shartlarga ega bo‘lgan bir o‘Ichovli chizigli bo‘lmagan
quyidagi issiqlik tarqalish tenglamasiga egamiz: For problems (1) and (2), we construct a mesh on the number

axesin and 7 with steps h, t respectively:
Wi = ¥, = ih.h>0,i=0.n.hn = b, w.= {a‘ =jr.r>0,j=0.mm =T}
olh* + 1)
With an error of we replace problem (1) by a finite-difference equation using an implicit

scheme:

e TN e Wt ey ML

r "
1=12....n-1; j=0.l1....m-1

vi=u/x,), i=012...n

J'a = @1[‘7,:')‘ j =1.2.....m
V=) =L

e

- (9)
a, a; a., and a,
here ! and are the nonlinear terms of problem (9). In our case ! I are the heat-conductivity
- a_and a '
coefficients. We compute ™ " using the following formula:
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i+l
The system is a system of nonlinear algebraic equations with respect to * .To solve it, we use the simple
iteration method and reduce it to the following linear system of algebraic equations:
s+14+1 5
V. — 1!:_': 1 FoT (r+1d+l se1d+l xS (r+1d+l s41d+l (5, g
— — = a.—'-1[:"'w'] Via— ¥V, _a.-'[:"'"'] Y. =V, +[:"'1.:']
T h*
(10)
Here ° = 0.1.... . is the iteration number. The iteration process continues until the condition
I+l 5
max|v.—y.|<&,0<i<h.
is satisfied.
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Remark. In all numerical calculations we take

From scheme (11) we obtain the coefficients of the tridiagonal matrix

j i+1
v =y ¥

. Introduce the notation

=Y,

(11)
A.B.C.F,

and, using the sweep

(Thomas) method, solve the following linear system:

A.—';;‘—l - C.—';.-' + B.—';.‘—l

=-F.1=12....n—1.

V=AYV, + 4. ¥V, = AV, + L.

RESULTS AND DISCUSSION

In the problem under consideration, the following nonlinear effects are observed: temporal unboundedness
(blow-up) of the solution; the phenomenon of finite speed of heat propagation and its spatial localization; and,
under the influence of a source term, the presence of finite-time displacement in nonlinear media.

m=123;,k=15p=2.29
n=14,9=1.3;q,=1.7

Figure 1. Reverse (backward) diffusion case

m+k(p-2)-1<0

CONCLUSION AND RECOMMENDATIONS

In this article, the numerical modeling of doubly
nonlinear parabolic equations with a source term
describing reaction—diffusion processes was carried
out. Using a self-similar (automodel) approach, the
equation was simplified and an initial approximation
for obtaining a numerical solution was determined.
An appropriate difference scheme was chosen, a
computational algorithm was developed, and stability
conditions were analyzed. The results obtained by
computer were presented graphically, demonstrating
the model’s consistency with the physical essence of
the problem. The findings confirm that the chosen
method is effective and reliable for solving complex
problems of the reaction—diffusion type.
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