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Abstract: In this paper, reaction-diffusion processes described by nonlinear parabolic equations with a source term 
are modeled. Using a self-similar (automodel) approach, the differential equation is simplified, and an initial 
approximation is constructed to obtain a numerical solution. During the computation, an appropriate difference 
scheme is selected, and the stability and convergence properties are analyzed. The results obtained through 
computer simulations are presented graphically and evaluated in terms of how well they reflect the dynamics of 
the physical processes. The proposed approach is shown to be effective for obtaining numerical solutions to such 
models. 
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INTRODUCTION:

 

Below, on the domain   

(1) 

                    (2) 

We consider the Cauchy problem for a divergence-form doubly nonlinear parabolic equation with a source and 

variable density, where   are numerical parameters characterizing the nonlinear medium, and 

 is the unknown solution. 

Equation (1) describes nonlinear heat conduction, diffusion, filtration, biological population dynamics, 
and various other processes [1–10]. 

 

https://doi.org/10.37547/ajast/Volume05Issue10-38
https://doi.org/10.37547/ajast/Volume05Issue10-38
https://doi.org/10.37547/ajast/Volume05Issue10-38
https://doi.org/10.37547/ajast/Volume05Issue10-38


American Journal of Applied Science and Technology 219 https://theusajournals.com/index.php/ajast 

American Journal of Applied Science and Technology (ISSN: 2771-2745) 
 

 
 
 

(1) is in divergence form; therefore, in regions where  or  the equation becomes 
degenerate and may fail to have a classical solution. In such cases one seeks and studies weak (generalized) 

solutions of (1). Accordingly, we regard its solution as a generalized one in the class 

 

and (1) is satisfied in the sense of an integral identity. 

For  equation (1) was proposed by L. Leibenson [16] to describe oil-and-gas 

processes. For  it models phenomena in a porous medium and other processes.. For 

 it represents the Hamilton–Jacobi equation [1–5]. 

(1), (2) The existence and uniqueness of solutions to the Cauchy problem for various specific values of the 
parameters have been studied in [6–20]. In the work of A. A. Samarskii and I. M. Sobol’ [15], numerical solutions 

were considered for the parameter values . In papers by H. Fujita, Daniela Giachetti, and 
M. Michaela Porzio, the global solvability of the Cauchy problem for nonlinear parabolic equations was 

investigated. In Huashui Zhan’s work, properties of solutions to the nonlinear diffusion equation with a damping 
term were studied. The non-divergence case of problems (1), (2) can be found in [20]. 

METHODOLOGY 

We seek the solution  in the form: 

 

where  and  are defined as below, and 

 

we defined in the following form:  

(3) 

Then we reduced equation (1) to the following “radially symmetric” form. 

(4) 

(4) we reduce the equation to a self-similar equation by the substitution
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 here  is the self-similar variable and  is the 
self-similar function. 

(5) 

Below, we consider the nontrivial, nonnegative solutions of equation (5) that satisfy the following 
conditions: 

(6) 

Next, using the method of comparing solutions [1] and the method of model (reference) equations [3], 
we obtain estimates for the solution of problem (1), (2). 

Theorem 1. Suppose the inequality  holds, and one of the inequalities 

(7) 

And suppose . Then problem (1), (2) has a global solution in the domain  and 
the following upper estimate holds: 

 

where: 

 

, . 

Proof. We represent  as the sum  and prove 
Theorem 1. Here 
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We will show that   when To do this, we proceed as follows: first, we 

calculate  and then prove that  

Now let us consider the following equation: 

 

The solution of this differential equation is as follows: 

. 

Now we prove that, under the assumptions of Theorem 1, the inequality  holds. 
Indeed, 

(8) 

Since  we can rewrite  as: 

. 

Substituting this relation into  gives: 

. 

If  and one of the inequalities (2) or (7) is satisfied, then the following inequality holds. 

 

Relying on the comparison theorem, we showed that the estimate    is valid in the 
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domain . Therefore, Theorem 1 is proved. 

From problem (1) we obtain the following one-dimensional nonlinear heat-diffusion equation with initial 
and boundary conditions. 

(1) masaladan biz boshlang‘ich va chegaraviy shartlarga ega bo‘lgan bir o‘lchovli chiziqli bo‘lmagan 
quyidagi issiqlik tarqalish tenglamasiga egamiz:  For problems (1) and (2), we construct a mesh on the number 

axes in   with steps  respectively: 

 

With an error of    we replace problem (1) by a finite-difference equation using an implicit 
scheme: 

(9) 

here  and  are the nonlinear terms of problem (9). In our case are the heat-conductivity 

coefficients. We compute  using the following formula: 

(9) 

The system is a system of nonlinear algebraic equations with respect to .To solve it, we use the simple 
iteration method and reduce it to the following linear system of algebraic equations: 

(10) 

Here  is the iteration number. The iteration process continues until the condition 

 

is satisfied. 
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Remark. In all numerical calculations we take . Introduce the notation 

(11) 

From scheme (11) we obtain the coefficients of the tridiagonal matrix  and, using the sweep 
(Thomas) method, solve the following linear system: 

 

RESULTS AND DISCUSSION 

In the problem under consideration, the following nonlinear effects are observed: temporal unboundedness 
(blow-up) of the solution; the phenomenon of finite speed of heat propagation and its spatial localization; and, 
under the influence of a source term, the presence of finite-time displacement in nonlinear media. 
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Figure 1. Reverse (backward) diffusion case 

 

Figure 2. Slow diffusion case

 

CONCLUSION AND RECOMMENDATIONS 

In this article, the numerical modeling of doubly 
nonlinear parabolic equations with a source term 
describing reaction–diffusion processes was carried 
out. Using a self-similar (automodel) approach, the 
equation was simplified and an initial approximation 
for obtaining a numerical solution was determined. 
An appropriate difference scheme was chosen, a 
computational algorithm was developed, and stability 
conditions were analyzed. The results obtained by 
computer were presented graphically, demonstrating 
the model’s consistency with the physical essence of 
the problem. The findings confirm that the chosen 
method is effective and reliable for solving complex 
problems of the reaction–diffusion type. 
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