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Abstract: In this work, the longitudinal-radial vibrations of a transversely-isotropic cylindrical shell interacting with
an internal viscous fluid are mathematically modeled. The interactions between the shell and the fluid are
considered on the basis of refined equations of motion. Fourier and Laplace transformations, boundary and contact
conditions, and the finite difference method are used to solve the equations. Displacement graphs are constructed
based on a practical problem and their correspondence to the physical essence is shown. The results of the research
are of great importance in the design and optimization of industrial structures.
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INTRODUCTION:

Elastic vibrations of cylindrical shells and their
interaction with internal fluids are important in oil

propagation of sound waves inside cylindrical shells
has also been theoretically studied [2].

and gas pipelines, jet engines, and underwater Accurate three-dimensional mathematical
structures. Often, the interaction with fluids in these computational models, taking into account the
processes is not studied. Therefore, improved interaction of the fluid and the shell, are being
mathematical models are needed to determine the created on the basis of classical and improved
longitudinal-radial  vibrations of transversally- approximate vibration equations [3-5]. In this work,
isotropic cylindrical shells. based on the refined equations, a system of

longitudinal-radial vibration equations of a cylindrical
shell interacting with an internal viscous fluid is
formed. By solving the resulting system of equations,
the deformed state of an arbitrary point of the
cylindrical shell interacting with an internal viscous
fluid is determined [6-11].

Scientific research conducted in the field of modeling
longitudinal-radial  vibrations of transversely-
isotropic cylindrical shells in the non-stationary
interaction with an internal viscous fluid forms the
theoretical basis of this work.

In recent years, much attention has been paid to the

modeling of longitudinal-radial vibrations arising METHODS

from the interaction of transversely isotropic The length | of the transversely-isotropic cylindrical
cylindrical shells with an internal viscous fluid in shell under study, let the outer radius be r, and the
engineering.  Initial  models  describing  the inner radius be r,. We consider the problem of the

propagation of longitudinal and transverse waves in

unsteady interaction of this cylindrical shell with an
shells have been developed [1]. Based on them, the

internal viscous fluid.
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The components of the stress tensor for a system are as follows:
transversely isotropic body in a cylindrical coordinate

ou, U U, ou, U au, ou, U, ou,
7+C127+C13€’0-69:C127+CIIT+C13E’GZZ:C13( P> +TJ+C33?’ (1)

where C; are elastic invariants for a transversely isotropic body, U, and U, are radial components of displacement

O,

=Cy

rr

vectors.
The equations of motion for longitudinal-radial vibration in a cylindrical coordinate system are written in the
following form:

Cll

—r— +C,,—2+ + LU, = p—*5;
o’ ot o e 4\ 9z orax r o or 2 o P
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Applying the Fourier-Laplace substitution to the system of equations (2), we obtain the following system of
equations

U, Cy,  Cody, U, (azur azuz}cn—cu%+clz—c U

(2)
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~ (0°U, 10U,  ,x -~ = ~\[dU, U -
C44(arz +F or ]_k C33Uz_k(c44+cla)[ or +?j=pp U,
Let us introduce the following symbols
, . .
50:6_2+lﬁ_i2; I§1=M; gzzm; (4)
or* ror r C, Cu

given definitions (4), the system of equations (3) can be written, differentiated with respect to r, in the following

form:
AU+ Cae— Lo kg Ve mg 3, Y| Sagey £ | Y g R0 —0; (5)
¢, €, or ¢

From the system of equations (5) get the following:

here

a2+a2—p(i+—]p + _Q % (C13+C44) K2 o2 2——k4%+ p°p +Pp2k2[%_
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The general solution of equation (6) is equal to the sum of the solutions of the following equation [11]
d°u, du, .
' +1 ' —[ai2+12jui=0 (I=1,2), (8)
r

dr> r dr
The general solution of equation (8) is equal to
U, = Al,(ar)+ DK, (esr)+ Al (e,r)+ DK, (a,r) (9)
Substituting solution (9) into the first equation of system (5), we integrate with respect to I and obtain the
following.

~ o~ Q. —6{2 az—az

kBU, = 1a [Aly(ayr)+ DK, (1) ]+ [Al,(a,r)+D,K, (ayr)] (10)
1 1

Expanding the Bessel functions in expressions (9) and (10) into power series with respect to the radial coordinate

I, we obtain the following.

- &fal-a o —a’ ( / & af -a’ al —a? (I‘/Z)2n
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here
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51 r -1 1
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longitudinal-radial vibrations of a transversely isotropic cylindrical shell, the following boundary conditions and
kinematic conditions apply:

=1 (12)

(12) Using Fourier-Laplace transforms for both boundary and contact conditions oU, /ét=v,,0U, /ot =v,,
we obtain the following:

e 1T (T

=, ff(z’t)r 10

(13)

Let us substitute expressions (9) and (10) into this system of equations (13) and replace the principal parts of their
displacements and coefficients o, o/ and «? (alpha) as follows:

0075 1= S0 k{0,057 s e

coskz) 4

. “coskz - . (14)
0., o 00, T

(14) in the system of equations obtained as a result of applying the substitutions
_ ol o
A :Clll(py_cu 87]’
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Substituting the values of the operators and performing mathematical simplifications, we obtain the following
system of equations:
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The coefficients in the system of equations (15) are determined by the geometric and physical parameters of the
shell material. For example,

2 2 2.2
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By solving this system of equations (15), it is possible to find functions U, ;, U, ,, U, , and U,, that allow determining

the displacements occurring at the points of their cross sections during unsteady vibrations of circular cylindrical
layers and shells interacting with an internal viscous fluid.

RESULTS

Let us now, based on the system of equations (15), we consider a practical problem in the longitudinal radial
vibrations of circular cylindrical transversely-isotropic layers and shells interacting with an internal viscous fluid.
We introduce the following dimensionless quantities

r=|r*;z:lz*;Cllzccfl;tz\/glt*;Uz =IU; U, ,=U U, =U; ;U =IU; (16)

By introducing dimensionless definitions (16) into the system of equations (15), we obtain a system of equations in
the dimensionless state
4
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The coefficients of the system of equations (17) represent the dimensionless form of the coefficients of the system
of equations (15).
We use the finite difference method to solve the system of equations (17). The geometric dimensions of the circular
cylindrical shell to solve the system of equations expanded using the finite difference method using the Maple
program are as follows: 1 =1m, r,=0.2m, r, =0.128 m. Apply torques to the free end of a circular cylindrical shell at

point z=0. Theend z =1 is fixed with a single screwWe consider the circular cylindrical shell material as aluminum,
zinc, and graphitepoxy. For aluminum material p=2700kg/m®, E=0.7-10" N/m?, v =0.33, C;; =1.103-10"' N /m?,
Cp, =0.543-10"" N/m?, C,;=0.543-10"' N/m?, Cg3=1.103-10"N/m?, C,, =0.280-10" N/m?, for zinc material
p=T7140 kg/m®, C;; =1.583-10" N/m?, C;, =0.315-10" N/m?, C;3=0.474-10"N/m?, C,; =0.616-10"N/m?
Cyy =0.40-10" N /m?, for graphitepoxy material p=1700 kg/m*, C;; =0.139-10"" N/m?, C,, =0.064-10"" N /m?,
Cy; =0.064-10"" N/m?, Cg3 =1.160-10""N/m?, C,, =0.070-10"' N/m? we obtain values. The thickness of the
cylindrical shell is h=r, —r;. The calculations resulted in Figures 1.2.
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Figure 1. Graph of the change in the Figure 2. Graph of the change in the
displacement vector U, component as a displacement vector U, component as a
function of the z coordinate when the function of the z coordinate when the
cylindrical shell material changes. cylindrical shell material changes.
DISCUSSION internal  viscous fluid and determines the
Fig. 1 shows a graph of the change in the displacements of shell points. Contrary to traditional
displacement vector component U, as a function of hypotheses, differential equations for longitudinal
coordinate for zinc, aluminium, and graphitepoxy and radial displacements in cylindrical coordinates
resin shell materials at a torque 10-103Nm applied to are derived based on refined equations of elastic
the end face of a circular cylindrical shell interacting motion. Taking into account the boundary and
with an internal viscous fluid. Fig. 2 shows the change kinematic conditions between the shell and the fluid,
in the displacement vector component U general solutions are found using Fourier and Laplace
r

transforms. According to the results, with an increase
in torque, the displacements reach their maximum
values, and these values decay along the length of the
shell. The graphical results correspond to the physical
essence of the problem and confirm the reliability of
the model. The results obtained provide a basis for in-
depth study of the dynamic state of cylindrical shells
under the influence of an internal viscous fluid and for
optimization of such structures.
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