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Abstract: In this work, the preparation, modification, and application of mesoporous zeolitic cationites with high 
sorption and catalytic properties for the synthesis of ethyl tert-butyl ether (ETBE) from an ethanol–isobutene 
mixture are presented. The acidity distribution (pKa = 0.8–6.4) and isothermal heat of ethanol adsorption were 
evaluated for sulfonic cation exchangers. Catalytic tests conducted in a continuous fixed-bed reactor (333–373 K; 
0.6–1.2 MPa) showed that mesostructured resins such as Amberlite IR-120, Tulsion T-52H, and KU-2-8 exhibit high 
activity and selectivity, achieving up to 97–99% selectivity toward ETBE. In contrast, Amberlyst 15Dry/36Dry 
demonstrated lower efficiency due to their smaller mesopores. It was proven that transition pores with diameters 
greater than 100 Å, which facilitate mass transfer, along with a high concentration of strong Brønsted acid sites, are 
the decisive factors that increase conversion and selectivity. 

 

Keywords: Nanomaterials, mesoporous zeolitic cationites, decationization, modification, acid sites, pKa 
distribution, ethyl tert-butyl ether, isobutylene, tert-butanol, conversion rate, selectivity, space velocity. 

 
INTRODUCTION:

Environmental monitoring results show that MTBE 
(methyl tert-butyl ether) is one of the most frequently 
detected volatile organic compounds in groundwater 
[1–2]. For example, it often ranks second among 
organic pollutants found in underground water 
sources [3–5]. This is explained by the high solubility 
of MTBE in water and its weak adsorption capacity on 
soil particles [6–9]. As a result, it can spread rapidly 
through groundwater, contaminating large areas. 

The impact of MTBE on human health is also a serious 
concern. High concentrations of MTBE have been 

found to irritate the eyes and skin [10–11]. Moreover, 
scientific sources report that MTBE exhibits genotoxic 
effects and can suppress the central nervous system 
[12]. These hazardous factors highlight the urgent 
need to effectively eliminate MTBE-related 
contamination sources. 

Various technologies have been used for the removal 
of MTBE from water and soil environments [13–18], 
including adsorption, air stripping, advanced 
oxidation processes, and biological degradation. 
However, each of these methods has certain 
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limitations. The adsorption method faces difficulties 
in the disposal or regeneration of used sorbents [19–
20]. Air stripping, due to MTBE’s low Henry’s law 
constant, is inefficient and costly [21–22]. Although 
advanced oxidation processes are effective in 
degrading MTBE, they often produce new, more toxic 
compounds, becoming secondary sources of 
pollution [23–29]. 

From this perspective, biological degradation is 
considered a promising technology for the 
remediation of MTBE contamination [30–31]. Its main 
advantages are low cost, environmental friendliness, 
absence of additional toxic by-products, and ease of 
control [32–34]. It has been established that under 
aerobic conditions, MTBE can be decomposed by 
microorganisms into carbon dioxide, water, and 
harmless organic metabolites [35–37]. Therefore, 
biodegradation is increasingly recognized by the 
scientific community as the most efficient and 
environmentally sustainable solution for eliminating 
MTBE-related pollution [38–39]. 

METHODS 

The IR spectra of the synthesized mesoporous zeolitic 
cationites with high sorption and catalytic properties 
were recorded using a UR-20 spectrophotometer in 
the range of 450–2000 cm⁻¹, as this region 
corresponds to the main absorption bands of AlO₄ 
and SiO₄ tetrahedral vibrations in the structure. For 
this purpose, 1–2 mg of the sample and 400 mg of KBr 
were pressed into a special ring-shaped mold. The 
prepared ring was then placed into the sample holder 
and positioned inside the spectrophotometer. 

The observed spectra may correspond to two types of 
vibrations. 
The first type of vibrations, found in all spectra of 
mesoporous zeolitic cationites with high sorption and 
catalytic activity, show the most intense peaks at 
1120 cm⁻¹, 820 cm⁻¹, and 470 cm⁻¹. The strong 
absorption band at 1120 cm⁻¹ is associated with the 
antisymmetric stretching vibrations of TO₄ 
tetrahedra. The band at 820 cm⁻¹ corresponds to 
stretching vibrations mainly involving SiO₄ 
tetrahedra. The position of this peak is influenced by 
the Si/Al ratio in the framework of mesoporous 
zeolitic cationites with high sorption and catalytic 
properties. 

1. The presence of intense absorption zones in the 
regions 1300–900, 820, and 400–600 cm⁻¹ 
confirms that all samples belong to mesoporous 
zeolitic cationites with high sorption and catalytic 
activity. 

2. The similarity of the absorption bands around 560 
cm⁻¹ in all obtained IR spectra indicates that all 
studied samples correspond to the high-silica 
zeolite (HSZ) structural type. 

RESULTS AND DISCUSSION 

The Amberlyst 15Dry and Amberlyst 36Dry samples 
have the lowest concentrations of acid sites 
(1.65×10⁻⁷ and 3.2×10⁻⁷ mol/m³, respectively). 
Differences in the number of acid sites at the same 
pKa value reflect the ability of sulfonated cation 
exchangers to form and stabilize hydroxyl groups on 
acidic samples. As shown in Table 1, for Amberlite IR-
120 and Tulsion T-52H—which contain equal 
amounts of divinylbenzene but differ in the quantity 
of pore-forming agents—the concentration of acid 
sites varies accordingly: the greater the amount of 
stabilizing agent in the cation exchanger, the higher 
the concentration of acid sites. Similar trends were 
observed in the (-R–SO₃H–)ₙ/HSZ and Amberlyst 
36Dry series. 

The Tulsion T-52H and Amberlyst 15Dry 
catalysts are characterized by equal amounts of pore-
forming components; however, the divinylbenzene 
content in Amberlyst 15Dry is three times higher than 
that in Tulsion T-52H. Consequently, the total 
concentration of acid sites sharply decreases in 
Amberlyst 15Dry, reaching only 1.65×10⁻⁷ mol/m², 
whereas for Tulsion T-52H it is 29.63×10⁻⁷ mol/m². 
The low concentration of acid sites in Amberlyst 
15Dry may be associated with its high degree of cross-
linking, which limits sulfonation to the outer surface 
of the cationite, resulting in a thinner active layer. 

When these data are compared with the 
structural characteristics of the resins measured by 
benzene adsorption, it can be noted that the 
Amberlyst 15Dry sample, which has the largest 
micropore volume, also shows the highest ethanol 
adsorption value—1.19 mmol/g. This adsorption 
capacity is approximately twice as high as that of 
other sulfonated cation exchangers, indicating 
improved sorption performance. 

Table 1. Limiting ethanol adsorption values on sulfonic cation exchangers at various experimental 
temperatures (Pₛ/P = 0.02). 

Т,К Adsorption of ethanol on the catalyst (a, mmol/g) 

KU-2 KU-23- 
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10 10/60 10/10
0 

30/100 16/60 16/80 

273 0,36 0,14 0,79 1,16 0,10 0,29 

293 0,38 0,10 0,35 0,44 0,05 0,14 

During the experiments, we investigated the effects 
of temperature, process pressure, space velocity, and 
the ethanol/n-butene ratio on the conversion rate of 
the reactants and the selectivity of ethyl tert-butyl 
ether (ETBE) formation. The temperature range of the 
experiments was determined by the thermal stability 
of the ion-exchange resins; therefore, the 
experiments were conducted at 333, 343, 353, 363, 
and 373 K. 

The lowest selectivity and catalytic activity in the 
synthesis of ETBE were observed with Amberlyst 
15Dry and Amberlyst 36Dry catalysts. For Amberlyst 
36Dry, the maximum ether yield was achieved at T = 
363 K. The most promising catalysts were Tulsion T-

52H and Amberlite IR-120, which exhibited high 
concentrations of acid sites (~22.11 × 10⁻⁷ and 30.24 
× 10⁻⁷ mol/m², respectively) and large mesopores (d 
> 100 Å). 

Additionally, the KU-2-8 gel-type cation exchanger 
demonstrated excellent performance, achieving up to 
99.2% selectivity toward ETBE formation. These 
results confirm that the combination of a high 
concentration of strong acid sites and the presence of 
wide mesopores facilitates the diffusion of reactants 
and products, thereby enhancing both conversion 
and selectivity in the synthesis of ethyl tert-butyl 
ether. 

Table 2. Effect of pressure on the catalytic properties of sulfonic cation exchangers during ethyl tert-butyl 
ether synthesis (T = 353 K). 

Samples Р, МПа 

S, % 
α,% 
конверсия Этил Тре 

бутилэфир 
 изобутилен третбутанол 

KU-2-8 

0.6 96.9 3.1 0.9 54.3 

0.8 98.7 1.4 0.9 53.4 

1.0 96.6 2.7 1.6 75.4 

Amberlite IR-
120 

0.6 91.6 2.6 6.7 61.9 

0.8 98.9 0.5 1.6 81.7 

1.0 97.8 1.1 1.8 74.9 

1.2 91.6 0.0 9.4 73.5 

Tulsion T-52H 

0.6 91.2 0.1 2.1 38.8 

0.8 94.1 0.3 3.2 45.4 

1.0 92.5 0.1 4.3 40.7 

1.2 91.2 0.2 4.9 41.3 

Amberlyst 
15Dry 

0.6 - - - - 

0.8 85.9 0.2 13.8 60.1 

1.0 94.4 0.2 5.8 73.4 

1.2 99.1 0.1 2.7 85.0 

KU-23 10/60 

0.6 96.3 1.2 3.5 56.2 

0.8 95.4 1.2 4.4 72.0 

1.0 97.3 0.3 3.4 83.6 

1.2 94.5 1.9 4.7 77.9 

0.6 92.6 0.0 7.4 30.0 
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Amberlyst 
36Dry 

0.8 92.7 0.0 7.3 47.4 

1.0 91.3 0.0 8.7 40.4 

1.2 95.7 0.0 4.3 44.8 

The influence of pressure on the conversion rate of 
the butane–butylene fraction and the selectivity of 
ethyl tert-butyl ether synthesis from ethanol and 
butane–butylene fraction is presented in Table 2. 

At a pressure of 0.8 MPa, the samples Amberlite IR-
120 (dₙₐₓ = 17.50 > 100 Å), Tulsion T-52H (dₙₐₓ = 25.65 
> 170 Å), and the KU-2-8 gel-type sample (dₙₐₓ = 14 > 
100 Å) were investigated. Among them, Amberlite IR-
120 showed the highest selectivity for ethyl tert-butyl 
ether, reaching 98%. Moreover, under the same 
pressure (P = 0.8 MPa), this sample also 

demonstrated the highest isobutylene conversion 
rate of 82%, compared with other sulfonic cation 
exchangers. 

Thus, the efficiency of ethyl tert-butyl ether synthesis 
on these resins is determined by both the acidic and 
structural properties of the catalysts. Taking the 
above findings into account, we can propose the 
following reaction scheme for the conversion of 
ethanol and isobutene on sulfonic cation exchangers: 

 

 

Figure 1. Reaction scheme for the formation of ethyl tert-butyl ether (ETBE). 

CONCLUSIONS 

1. As optimal operating conditions, a temperature 
range of 333–353 K and, in most cases, a pressure 
of approximately 0.8 MPa are recommended. In 
certain systems, increasing the pressure up to 
1.0–1.2 MPa may positively affect selectivity; 
however, for catalysts with diffusion limitations, 
the opposite effect was observed. 

2. Increasing the ethanol/isobutene molar ratio up 
to 2:1 slightly improved both selectivity and 
isobutene conversion for Amberlite IR-120. 
Raising the space velocity from 0.5 to 2 h⁻¹ slightly 
reduced overall productivity, indicating that the 
contact time should be optimized for maximum 
efficiency. 

3. From a mechanistic standpoint, an ethanol 
molecule adsorbed on a strong Brønsted acid site 

can form associative hydrogen bonds with 
adjacent ethanol molecules, promoting ETBE 
formation in the presence of mesopores. In 
contrast, within smaller pores, associative 
ethanol adsorption becomes hindered, leading to 
a higher tendency toward the formation of side 
products. 
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