

American Journal of Applied Science and Technology

General Characteristics Of Methods For Obtaining Nanomaterials In HSZ-Cationites During Ethyltertbutyl Synthesis

Nigora Muminova

Master's Student, Samarkand State University named after Sharof Rashidov, Samarkand, Republic of Uzbekistan

Jasur Shukurov

Assistant (PhD), Department of Polymer Chemistry and Chemical Technology, Institute of Biochemistry, Samarkand State University named after Sharof Rashidov, Samarkand, Republic of Uzbekistan

Dilshod Bakhtiyorov

Student, School No. 80, Samarkand, Samarkand, Republic of Uzbekistan

Samida Ernazarova

Assistant (PhD), Department of Polymer Chemistry and Chemical Technology, Institute of Biochemistry, Samarkand State University named after Sharof Rashidov, Samarkand, Republic of Uzbekistan

Received: 28 August 2025; Accepted: 24 September 2025; Published: 26 October 2025

Abstract: In this work, the preparation, modification, and application of mesoporous zeolitic cationites with high sorption and catalytic properties for the synthesis of ethyl tert-butyl ether (ETBE) from an ethanol–isobutene mixture are presented. The acidity distribution (pKa = 0.8–6.4) and isothermal heat of ethanol adsorption were evaluated for sulfonic cation exchangers. Catalytic tests conducted in a continuous fixed-bed reactor (333–373 K; 0.6–1.2 MPa) showed that mesostructured resins such as Amberlite IR-120, Tulsion T-52H, and KU-2-8 exhibit high activity and selectivity, achieving up to 97–99% selectivity toward ETBE. In contrast, Amberlyst 15Dry/36Dry demonstrated lower efficiency due to their smaller mesopores. It was proven that transition pores with diameters greater than 100 Å, which facilitate mass transfer, along with a high concentration of strong Brønsted acid sites, are the decisive factors that increase conversion and selectivity.

Keywords: Nanomaterials, mesoporous zeolitic cationites, decationization, modification, acid sites, pKa distribution, ethyl tert-butyl ether, isobutylene, tert-butanol, conversion rate, selectivity, space velocity.

INTRODUCTION:

Environmental monitoring results show that MTBE (methyl tert-butyl ether) is one of the most frequently detected volatile organic compounds in groundwater [1–2]. For example, it often ranks second among organic pollutants found in underground water sources [3–5]. This is explained by the high solubility of MTBE in water and its weak adsorption capacity on soil particles [6–9]. As a result, it can spread rapidly through groundwater, contaminating large areas.

The impact of MTBE on human health is also a serious concern. High concentrations of MTBE have been

found to irritate the eyes and skin [10–11]. Moreover, scientific sources report that MTBE exhibits genotoxic effects and can suppress the central nervous system [12]. These hazardous factors highlight the urgent need to effectively eliminate MTBE-related contamination sources.

Various technologies have been used for the removal of MTBE from water and soil environments [13–18], including adsorption, air stripping, advanced oxidation processes, and biological degradation. However, each of these methods has certain

limitations. The adsorption method faces difficulties in the disposal or regeneration of used sorbents [19–20]. Air stripping, due to MTBE's low Henry's law constant, is inefficient and costly [21–22]. Although advanced oxidation processes are effective in degrading MTBE, they often produce new, more toxic compounds, becoming secondary sources of pollution [23–29].

From this perspective, biological degradation is considered a promising technology for the remediation of MTBE contamination [30–31]. Its main advantages are low cost, environmental friendliness, absence of additional toxic by-products, and ease of control [32–34]. It has been established that under aerobic conditions, MTBE can be decomposed by microorganisms into carbon dioxide, water, and harmless organic metabolites [35–37]. Therefore, biodegradation is increasingly recognized by the scientific community as the most efficient and environmentally sustainable solution for eliminating MTBE-related pollution [38–39].

METHODS

The IR spectra of the synthesized mesoporous zeolitic cationites with high sorption and catalytic properties were recorded using a UR-20 spectrophotometer in the range of 450–2000 cm $^{-1}$, as this region corresponds to the main absorption bands of AlO₄ and SiO₄ tetrahedral vibrations in the structure. For this purpose, 1–2 mg of the sample and 400 mg of KBr were pressed into a special ring-shaped mold. The prepared ring was then placed into the sample holder and positioned inside the spectrophotometer.

The observed spectra may correspond to two types of vibrations.

The first type of vibrations, found in all spectra of mesoporous zeolitic cationites with high sorption and catalytic activity, show the most intense peaks at 1120 cm⁻¹, 820 cm⁻¹, and 470 cm⁻¹. The strong absorption band at 1120 cm⁻¹ is associated with the antisymmetric stretching vibrations tetrahedra. The band at 820 cm⁻¹ corresponds to stretching vibrations mainly involving tetrahedra. The position of this peak is influenced by the Si/Al ratio in the framework of mesoporous zeolitic cationites with high sorption and catalytic properties.

- The presence of intense absorption zones in the regions 1300–900, 820, and 400–600 cm⁻¹ confirms that all samples belong to mesoporous zeolitic cationites with high sorption and catalytic activity.
- 2. The similarity of the absorption bands around 560 cm⁻¹ in all obtained IR spectra indicates that all studied samples correspond to the high-silica zeolite (HSZ) structural type.

RESULTS AND DISCUSSION

The Amberlyst 15Dry and Amberlyst 36Dry samples have the lowest concentrations of acid sites (1.65×10⁻⁷ and 3.2×10⁻⁷ mol/m³, respectively). Differences in the number of acid sites at the same pKa value reflect the ability of sulfonated cation exchangers to form and stabilize hydroxyl groups on acidic samples. As shown in Table 1, for Amberlite IR-120 and Tulsion T-52H—which contain equal amounts of divinylbenzene but differ in the quantity of pore-forming agents—the concentration of acid sites varies accordingly: the greater the amount of stabilizing agent in the cation exchanger, the higher the concentration of acid sites. Similar trends were observed in the (-R–SO₃H–)②/HSZ and Amberlyst 36Dry series.

The Tulsion T-52H and Amberlyst 15Dry catalysts are characterized by equal amounts of poreforming components; however, the divinylbenzene content in Amberlyst 15Dry is three times higher than that in Tulsion T-52H. Consequently, the total concentration of acid sites sharply decreases in Amberlyst 15Dry, reaching only 1.65×10^{-7} mol/m², whereas for Tulsion T-52H it is 29.63×10^{-7} mol/m². The low concentration of acid sites in Amberlyst 15Dry may be associated with its high degree of crosslinking, which limits sulfonation to the outer surface of the cationite, resulting in a thinner active layer.

When these data are compared with the structural characteristics of the resins measured by benzene adsorption, it can be noted that the Amberlyst 15Dry sample, which has the largest micropore volume, also shows the highest ethanol adsorption value—1.19 mmol/g. This adsorption capacity is approximately twice as high as that of other sulfonated cation exchangers, indicating improved sorption performance.

Table 1. Limiting ethanol adsorption values on sulfonic cation exchangers at various experimental temperatures (PP/P = 0.02).

T,K	Adsorption of ethanol on the catalyst (a, mmol/g)				
	KU-2	KU-23-			

	10	10/60	10/10 0	30/100	16/60	16/80
273	0,36	0,14	0,79	1,16	0,10	0,29
293	0,38	0,10	0,35	0,44	0,05	0,14

During the experiments, we investigated the effects of temperature, process pressure, space velocity, and the ethanol/n-butene ratio on the conversion rate of the reactants and the selectivity of ethyl tert-butyl ether (ETBE) formation. The temperature range of the experiments was determined by the thermal stability of the ion-exchange resins; therefore, the experiments were conducted at 333, 343, 353, 363, and 373 K.

The lowest selectivity and catalytic activity in the synthesis of ETBE were observed with Amberlyst 15Dry and Amberlyst 36Dry catalysts. For Amberlyst 36Dry, the maximum ether yield was achieved at T = 363 K. The most promising catalysts were Tulsion T-

52H and Amberlite IR-120, which exhibited high concentrations of acid sites ($^{22.11} \times 10^{-7}$ and 30.24 $\times 10^{-7}$ mol/m², respectively) and large mesopores (d > 100 Å).

Additionally, the KU-2-8 gel-type cation exchanger demonstrated excellent performance, achieving up to 99.2% selectivity toward ETBE formation. These results confirm that the combination of a high concentration of strong acid sites and the presence of wide mesopores facilitates the diffusion of reactants and products, thereby enhancing both conversion and selectivity in the synthesis of ethyl tert-butyl ether.

Table 2. Effect of pressure on the catalytic properties of sulfonic cation exchangers during ethyl tert-butyl ether synthesis (T = 353 K).

Samples	Р, МПа	S, %	α,%		
		Этил Тре бутилэфир	изобутилен	третбутанол	конверсия
KU-2-8	0.6	96.9	3.1	0.9	54.3
	0.8	98.7	1.4	0.9	53.4
	1.0	96.6	2.7	1.6	75.4
	0.6	91.6	2.6	6.7	61.9
Amberlite IR-	0.8	98.9	0.5	1.6	81.7
120	1.0	97.8	1.1	1.8	74.9
	1.2	91.6	0.0	9.4	73.5
Tulsion T-52H	0.6	91.2	0.1	2.1	38.8
	0.8	94.1	0.3	3.2	45.4
	1.0	92.5	0.1	4.3	40.7
	1.2	91.2	0.2	4.9	41.3
Amberlyst 15Dry	0.6	-	-	-	-
	0.8	85.9	0.2	13.8	60.1
	1.0	94.4	0.2	5.8	73.4
	1.2	99.1	0.1	2.7	85.0
KU-23 10/60	0.6	96.3	1.2	3.5	56.2
	0.8	95.4	1.2	4.4	72.0
	1.0	97.3	0.3	3.4	83.6
	1.2	94.5	1.9	4.7	77.9
	0.6	92.6	0.0	7.4	30.0

Amberlyst 36Dry	0.8	92.7	0.0	7.3	47.4
	1.0	91.3	0.0	8.7	40.4
	1.2	95.7	0.0	4.3	44.8

The influence of pressure on the conversion rate of the butane–butylene fraction and the selectivity of ethyl tert-butyl ether synthesis from ethanol and butane–butylene fraction is presented in Table 2.

At a pressure of 0.8 MPa, the samples Amberlite IR-120 (d \mathbb{D}_{ax} = 17.50 > 100 Å), Tulsion T-52H (d \mathbb{D}_{ax} = 25.65 > 170 Å), and the KU-2-8 gel-type sample (d \mathbb{D}_{ax} = 14 > 100 Å) were investigated. Among them, Amberlite IR-120 showed the highest selectivity for ethyl tert-butyl ether, reaching 98%. Moreover, under the same pressure (P = 0.8 MPa), this sample also

demonstrated the highest isobutylene conversion rate of 82%, compared with other sulfonic cation exchangers.

Thus, the efficiency of ethyl tert-butyl ether synthesis on these resins is determined by both the acidic and structural properties of the catalysts. Taking the above findings into account, we can propose the following reaction scheme for the conversion of ethanol and isobutene on sulfonic cation exchangers:

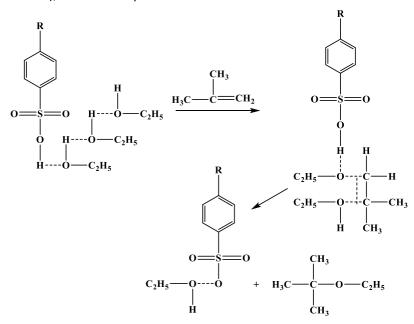


Figure 1. Reaction scheme for the formation of ethyl tert-butyl ether (ETBE).

CONCLUSIONS

- 1. As optimal operating conditions, a temperature range of 333–353 K and, in most cases, a pressure of approximately 0.8 MPa are recommended. In certain systems, increasing the pressure up to 1.0–1.2 MPa may positively affect selectivity; however, for catalysts with diffusion limitations, the opposite effect was observed.
- Increasing the ethanol/isobutene molar ratio up to 2:1 slightly improved both selectivity and isobutene conversion for Amberlite IR-120. Raising the space velocity from 0.5 to 2 h⁻¹ slightly reduced overall productivity, indicating that the contact time should be optimized for maximum efficiency.
- 3. From a mechanistic standpoint, an ethanol molecule adsorbed on a strong Brønsted acid site

can form associative hydrogen bonds with adjacent ethanol molecules, promoting ETBE formation in the presence of mesopores. In contrast, within smaller pores, associative ethanol adsorption becomes hindered, leading to a higher tendency toward the formation of side products.

REFERENCES

- Shukurov, J. (2025, July). Modeling the production of dimethyl ether from natural gas. In AIP Conference Proceedings (Vol. 3304, No. 1, p. 040062). AIP Publishing LLC. https://doi.org/10.1063/5.0269234
- 2. Shukurov, J., & Fayzullaev, N. (2024, March). Direct synthesis of dimethyl ether from synthesis gas. In AIP Conference Proceedings (Vol. 3045,

- No. 1, p. 060042). AIP Publishing LLC. https://doi.org/10.1063/5.0197641
- **3.** Ernzarova, S., Juraev, A., Alimukhamedov, M., & Magrupov, F. (2022). Study of various quality characteristics of polyester fibers Obtained on the basis of primary and secondary polyethylene Terephthalate. Chemistry and chemical engineering, 2021(4), 7. https://doi.org/10.70189/1992-9498.1442
- 4. Ernazarova, S., Juraev, A., Ernazarov, S., & Alimuhamedov, M. (2025, July). Obtaining polyester fiber based on various secondary polyethylene terephthalate raw materials. In AIP Conference Proceedings (Vol. 3304, No. 1, p. 040074). AIP Publishing LLC. https://doi.org/10.1063/5.0269052
- Ernazarova, S. S., Juraev, A. B., Adilov, R. I., Alimukhamedov, M. G., & Mahkamov, T. B. (2024). Researchof UV Aging of Secondary Polyethylene Terephthalate in the Conditions of Central Asia. CET Journal-Chemical Engineering Transactions, 111.

https://doi.org/10.3303/CET24111108

- 6. Ernazarova, S. S., Ziyadullayeva, S. S., & Boliqulova, F. M. (2024, February 16). Ikkilamchi polietilentereftalatni fizik-mexanik qayta ishlashning bugungi tendensiyasi. International Scientific Journal Science and Innovation: Transformation of Education The Role of Women in the Development of Science, 521–523. https://doi.org/10.5281/zenodo.10657365
- 7. Ernazarova, R., Maksumova, D., Gafforova, Z., & Ernazarova, S. (2024). Quality indicators of roots and tubers stored in the storage facilities. In E3S Web of Conferences (Vol. 486, p. 02022). EDP Sciences.

https://doi.org/10.1051/e3sconf/202448602022

- 8. Ernazarova, S., Juraev, A., & Alimuhamedov, M. (2022, June). Obtaining polyester fiber on the basis of secondary polyethylene terephthalate waste processed by different mechanical methods. In AIP Conference Proceedings (Vol. 2432, No. 1, p. 050008). AIP Publishing LLC. https://doi.org/10.1063/5.0089540
- 9. Ernazarova, S. S., Zhuraev, A. L., Karimov, Y. K., Zhuraev, A. B., Alimukhamedov, M. G., & Adilov, (2023).Tekhnologiya polucheniya superkontsentratov (master batch) na osnove produktov alkogoliza vtornogo polietilentereftalata. Vysshikh Izvestiya Zavedeniy. Khimiya i Uchebnykh Seriya

- Khimicheskaya Tekhnologiya, 66(4), 93–100. https://doi.org/10.6060/ivkkt.20236604.6702
- 10. Shukurov, J., & Fayzullaev, N. (2023). Kinetic laws of dimethyl ether synthesis reaction. E3S Web of Conferences, 389, 01037. https://doi.org/10.1051/e3sconf/202338901037
- **11.** Shukurov, J., & Fayzullaev, N. (2023). Kinetic laws of the reaction of dimethyl ether synthesis from synthesis gas. International Journal of Materials and Chemistry, 13(1), 5–10. http://article.sapub.org/10.5923.j.ijmc.2023130 1.02.html
- 12. Shukurov, J., et al. (2023). Technology of extraction of dimethyl ether from methanol. Universum: Tekhnicheskie Nauki, 6–5(111), 46–49. https://doi.org/10.32743/UniTech.2023.111.6.15670
- **13.** Shukurov, J., & Fayzullaev, N. (2023). Catalyst selection and technology for obtaining dimethyl ether. Universum: Khimiya i Biologiya, 6–2(108), 57–61. https://doi.org/10.32743/UniChem.2023.108.6.1 5577
- **14.** Shukurov, J. K. (2023). Modeling the production of dimethyl ether from natural gas. Scientific and Technical Journal of Namangan Institute of Engineering and Technology, 8(4), 126–137. https://doi.org/10.61151/stjniet.v8i4.228
- **15.** Shukurov, J., & Fayzullaev, N. (2023). Mahalliy xomashyolar asosida dimetilefir olishga turli omillarning ta'siri. Issue 3 of 2023 (139/1), 3(132), 5–13. https://doi.org/10.59251/2181-1296.2023.v3.139.1.2071
- 16. Shukurov, J. H., et al. (2021). Obtaining high-molecular hydrocarbons from synthesis gas and physico-chemical characteristics of the catalyst. Academicia: An International Multidisciplinary Research Journal, 11(4), 87–95. http://dx.doi.org/10.5958/2249-7137.2021.01012.0
- 17. Kholmurodovich, X. J., et al. (2021). Obtaining high-performance composite materials based on Navbahor bentonite and studying the sorption properties. International Journal of Innovations in Engineering Research and Technology, 8(10), 91–99. https://doi.org/10.17605/OSF.IO/RSZ9V
- **18.** Khamroyev, J. X., et al. (2021). Analysis of texture characteristics of modified and activated Navbahor bentonite. Asian Journal of Multidimensional Research, 10(9), 382–393.

http://dx.doi.org/10.5958/2278-4853.2021.00685.6

- 19. Khamroyev, J. X., et al. (2021). Optimization of the acid activation process of bentonite. Academicia: An International Multidisciplinary Research Journal, 11(9), 589–597. https://doi.org/10.5958/2249-7137.2021.01959.5
- **20.** Khamroyev, J. X., et al. (2021). Physicochemical and texture characteristics of natural bentonite. JournalNX, 7(10), 45–54. https://doi.org/10.17605/OSF.IO/MVZ2Q
- 21. Tillyaev, A. D., Dzhalilov, A. T., & Askarov, M. A. (1982). Low-temperature polymerization of beta-chloroethylmethacrylate during its reaction with dimethylaniline. Izvestiya Vysshikh Uchebnykh Zavedeniy. Seriya Khimiya i Khimicheskaya Tekhnologiya, 25(11), 1416–1417. https://doi.org/10.6060/tcct
- **22.** Zakirov, K. K., Tillyaev, A. D., & Dzhalilov, A. T. (1989). Polymerization of halogeno-propargyls under UV irradiation. Vysokomolekulyarnye Soedineniya, 31(5), 384–385.
- 23. Abdumavlyanova, M. K., Tillyaev, A. D., & Dzhalilov, A. T. (1993). Spontaneous polymerization of propargyl bromide during interaction with pyridine. Khimija i Khimicheskaja Tekhnologija, 36(11), 116–118. https://doi.org/10.15050
- **24.** Tillyaev, A. D., Zakirov, K. K., Abdumavlyanova, M. K., Yakubov, N. Sh., & Dzhalilov, A. T. (1995). UV-initiated polymerization of phenylacetylene in the presence of propargyl halides. Polymer Science. Series B, 37(7–8), 355–357. https://doi.org/10.17580
- **25.** Boltayev, O., et al. (n.d.). Mis shlaklarini flotatsion boyitish natijasida hosil boʻlgan temir saqlovchi chiqindi tarkibidan temir oksidini ajratib olish texnologiyasi.
- **26.** Tillyaev, A. D. (2016). Issledovanie protsessov sushki kompozitsionnoi avtomobil'noi antikorrozionnoi vodnoi mastiki Auto LKM A. Kompozitsionnye Materialy, (4), 103–105.
- 27. Fayzillayev, Z., Saidmuratov, B. I., & Tillyaev, A. D. (2020). New type of gypsum-based liquid mixture. JournalNX: A Multidisciplinary Peer-Reviewed Journal, (9), 194–200. https://repo.journalnx.com
- **28.** Fayzillayev, Z. B., Bakhriev, N. F., Saidmiradov, B. I., & Tillyaev, A. D. (2020, December 10–12). Dry plaster mixes based on gypsum and woodworking

- elements. In Proceedings of the Multidisciplinary International Scientific-Practical Conference "Current Issues of Science, Education and Industry in Modern Research" (pp. 393–401). JournalNX. https://repo.journalnx.com
- 29. Tillyaev, A., & Berdiyev, H. (2022). Study of block brick materials on the basis of cotton stalk and their properties. European Journal of Life Safety and Stability (EJLSS), 17, 62–65. www.ejlss.indexedresearch.org
- **30.** Tillyaev, A., & Berdiyev, H. (2022). Physical and thermophysical properties of materials based on mineral and vegetable raw materials. European Journal of Life Safety and Stability (EJLSS), 17, 49–52. www.ejlss.indexedresearch.org
- **31.** Tillyaev, A. D., Sayitkulov, Sh. M., & Mansurova, D. A. (2022). Water-based anticorrosion paint and materials for protection against an aggressive environment. AIP Conference Proceedings, 2432, 050036-1–050036-5. https://doi.org/10.1063/5.0089715
- 32. Tillyaev, A. D. (2023). Polymerization of chloroethyl methacrylate and its interaction with amino compounds. AIP Conference Proceedings, 2789(1), 020018-1–020018-6. https://doi.org/10.1063/5.0145630
- **33.** Oserbaeva, A., Muhamadjonova, M., & Bukhorov, S. (2024). Studying the physical and chemical properties of amine- and amide-containing organic inhibitors. American Journal of Applied Science and Technology, 4(6), 41–45.
- **34.** Tillyaev, A., et al. (2025). Paxta brezentini gidrofobik tozalash texnologiyasi. Luchshie Intellektualnye Issledovaniya, 46(5), 420–430.
- **35.** Tillyaev, A. D., & Mamajanov, R. I. (2007). Obtaining chemically proof varnish-paint materials from acetylene-containing wastage. Abstracts of Papers of the American Chemical Society, 234.
- **36.** Tillyaev, A. D., Akhmedov, B., & Khalilov, K. F. (2007). Study of vapor-catching processes of organic solvents in fixing and drying of enamel varnish-paint materials. Abstracts of Papers of the American Chemical Society, 234.
- **37.** Ruziyev, R. R., Dzhalilov, A. T., Papisov, I. M., Topchiev, D. A., Litmanovich, A. A., Mukhamedzhanov, M. A. V., ... & Valiev, M. A. (1991). [Study on polymerization and catalyst interactions.]
- **38.** Muminova, N., & Shukurov, J. (2025). Synthesis of ethyl tert-butyl ether over HSZ-cationites:

Structure–acidity–adsorption–activity correlation. Universum: Khimiya i Biologiya, 10(136), 34–38. https://doi.org/10.32743/UniChem.2025.136.10.20936

39. Muminova, N., Bakhtiyorov, D., & Shukurov, J. (2025, October 3). Structure, acidity, and

adsorption properties of mesoporous zeolite-based cationites and their catalytic performance in ethyl tert-butyl ether synthesis. Collection of Scientific Papers «SCIENTIA», Berlin, Federal Republic of Germany. https://doi.org/10.36074/scientia-03.10.2025