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Abstract: This article presents the development of a mathematical model for calculating the reliability parameters 
of smart home system sensors. The primary objective of the study is to develop and analyze a model that can predict 
the failure probability and uptime of sensors based on statistical and experimental data. To solve this problem, 
mathematical modeling methods, probability theory, and modern artificial intelligence approaches genetic 
algorithms (GA) and recurrent neural networks (RNN, LSTM) are applied. These methods improve the accuracy of 
failure prediction and allow for the consideration of external factors such as temperature, humidity, power 
consumption, and network load. As a result, a comprehensive model was constructed that describes the behavior 
of sensors under dynamic operating conditions. A comparative analysis of prediction accuracy was conducted, and 
key reliability metrics failure rate, mean time between failures, and system availability were evaluated. The 
developed model can be used in the design, optimization, and maintenance of smart home systems, as well as in 
other areas of the Internet of Things (IoT) where high reliability of sensor nodes is important. 

 

Keywords: Reliability, mathematical model, sensors, smart home, genetic algorithm, system reliability, recurrent 
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INTRODUCTION:

Modern smart home technologies are integrated 
systems based on the interaction of multiple sensor 
devices, controllers, and actuators. The efficiency and 
stability of such systems directly depend on the 
reliability of the sensors that continuously collect and 
transmit information about the environment, utility 
networks, and household appliances. 

With the increasing number of connected devices and 
the increasing complexity of the architecture of 
Internet of Things (IoT) systems, assessing and 
predicting the reliability of sensor nodes is becoming 
increasingly important. Failures of individual sensors 
can lead to data corruption, control failures, and, 
consequently, a decrease in the overall performance 
of intelligent systems. 

Traditional reliability analysis methods are based on 
statistical models and do not always account for 

dynamic changes in operating conditions such as 
temperature, humidity, supply voltage, and usage 
intensity. Therefore, it is necessary to develop a 
mathematical model capable of describing sensor 
behavior, taking into account the influence of 
multiple factors, and enabling real-time prediction of 
their condition. The objective of this work is to 
develop a mathematical model for calculating and 
predicting the reliability parameters of smart home 
system sensors using modern data analysis and 
artificial intelligence [1].  

To achieve this goal, the following tasks are 
addressed: analyzing the factors influencing the 
reliability of sensor devices; constructing a 
mathematical relationship between reliability and 
operational and time parameters; using genetic 
algorithms (GA) to optimize the model parameters; 
using recurrent neural networks (LSTM) to predict the 
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dynamics of reliability indicators; evaluating the 
effectiveness of the proposed model based on 
simulation and comparative analysis of the results. 

The scientific novelty of this work lies in the 
integration of mathematical modeling methods and 
intelligent algorithms to solve the problem of 
reliability analysis of sensor systems in a smart home 
environment. Its practical significance lies in the 
applicability of the developed model to the design, 
optimization, and preventive maintenance of sensor 
devices in automation systems and the Internet of 
Things (IoT) [2]. 

METHODS 

Model Objectives and Initial Assumptions. 
Objective: Calculate the reliability metrics of a sensor 
and sensor system: R(t) (probability of failure-free 

operation up to time t), failure rate function λ(t), 
MTBF, time-to-failure distribution T, and system 
reliability (k-of-n, series/parallel configuration, etc.). 

Assumptions (can be relaxed if necessary): Failures 
can be either "mechanical/hardware" (wear and tear) 
or "electronic/communication" (communications, 
battery). Observations can be right-censored—the 
device is still operational at the end of the 
observation. Sensors can be dependent (common 
network, power supply) or independent-the model 
takes this into account in its variants. Basic Elements 
(Single-Device Model). Reliability and Failure Rate:  
Let T be a random time to failure.  

Reliability (function):  

 

𝑅(𝑡) = 𝑃(𝑇 > 𝑡) = exp⁡(−∫ 𝜆(𝑢)𝑑𝑢).
𝑡

0
                                   (1) 

 

λ(t) is the instantaneous failure rate. 

 

Parametric Families. Exponential (constant rate λ): λ(t)=λ, R(t)=e−λt, MTBF=1/λ.  

 

Model of Weibull: 

 

                                         𝑓(𝑡) =
𝛽

𝜂
(
𝑡

𝜂
)𝛽−1 exp (−(

𝑡

𝜂
)
𝛽
),                                                         (2) 

 

𝜆(𝑡) =
𝛽

𝜂
(
𝑡

𝜂
)𝛽−1,    𝑅(𝑡) = exp⁡(− (

𝑡

𝜂
)
𝛽
. 

β<1: "decreasing" intensity (defects), β=1: exponential, β>1: increasing (wear). Lognormal, gamma, etc. can 
be used if needed. 

Parameter Estimation (MLE) for Weibull. For observations ti and censoring indicator δi (1 = failure observed, 
0 = censored): log-likelihood: 

 

                                    𝑙(𝛽, 𝜂) = ∑ [𝛿𝑖𝑙𝑜𝑔𝑓(𝑡𝑖) + (1 − 𝛿𝑖)𝑙𝑜𝑔𝑅(𝑡𝑖)].𝑖                                         (3) 

  

Maximization is performed numerically (optimize, lifelines, R: survival). 

Accounting for covariates (conditional model): Cox and survival regressions. Proportional hazards (Cox):  

 

                                             𝜆(𝑡|𝑥) = 𝜆0(𝑡) exp(𝛾
𝑇𝑥),                                                             (4) 

 

Where x is a feature vector (temperature, humidity, battery level, traffic intensity, firmware version, sensor 
model, average network load, etc.). Estimation is partially parametric (estimation of γ using the partial likelihood 
method) [3]. 

Advantages: interpretability, ability to work with censored data. Accelerated Failure Time (AFT). 

AFT models (Weibull-AFT, log-normal AFT) model the influence of factors on the median/mean time to 
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failure. 

States and Transitions - CTMC and Discrete Models. For modeling device states (operating, degrading, not 
working, under repair), it is convenient to use continuous-time Markov chains (CTMC) with an intensity matrix Q 
[4]. 

For example, 3-states: 1=OK, 2=Degraded, 3=Failed. Matrix Q: 

 

                                                        𝑄 = (
−(𝛼+𝜇)

0
0

𝛼
−𝑣
0

𝜇
𝑣
0
)                                                                 (5) 

 

where α is the degradation rate, μ is the immediate failure, ν is the transition to failure, etc. The solutions 
P(t)=exp(Qt) give the probabilities of being in each state at time t. 

 

RESULTS AND DISCUSSION 

System Reliability (Multiple Sensors). k-of-n (k of n). If 

the sensors are i.i.d. with p(t)=R(t), the probability 
that an individual sensor is alive at t is: 

 

𝑅𝑠𝑦𝑠𝑡𝑒𝑚(𝑡) = ∑ 𝑝(𝑡)𝑖𝑛
𝑖=𝑘 (1 − 𝑝(𝑡))𝑛−𝑖.                                               (6) 

If there is a dependency between sensors, a 
dependency model (copula) or Monte-Carlo 
simulation with common factors (e.g., a common 
power source) is required. 

Serial/Parallel Relationships. Sequence (the system 
fails on the first failure): 

 

𝑅𝑠𝑦𝑠(𝑡) = ∏ 𝑅𝑖(𝑡).𝑖                                                               (7) 

Parallel (or one): 1- ∏ (1 − 𝑅𝑖(𝑡)).𝑖  

Data: What to Collect and How to Prepare. Power-
on/failure time, repair markers (repair/replacement), 
censoring indicators. Telemetry: battery voltage, 
temperature, humidity, RSSI/packet loss rate, 
number of restarts, firmware version, load intensity. 
Censoring types: right-censoring, interval censoring 
(if checks are periodic). Enrichment with 
environmental data (house current peaks, network 
outages) [5]. 

Fitting Methods/Algorithms. Classical Statistical 
Method. Conduct exploratory analysis: Kaplan-Meier 
estimates of R̂(t), log-rank tests for groups. If the 
result looks exponential/Weibull, fit MLE. Cox fit for 
covariates -> estimate the significance of γ, check 
proportional hazards (Schoenfeld residuals). 

Modeling/Simulation. Generate synthetic T for the 
selected distribution, add censoring and covariates. 
Monte-Carlo for system reliability under 
dependencies [6]. 

Data-Driven / ML Approaches. LSTM/GRU for 
predicting the probability of failure in the next time 
interval based on telemetry (sequential approach). 
DeepSurv / DeepHit — neural network survival 
models (can be trained on censored data). Hybrid: use 
a parametric model as the "base" (Weibull) and LSTM 
for parameter prediction (e.g., predicting the local 
intensity λ(t) or Cox coefficients). 

Quality Metrics and Model Validation. For survival 

models: Concordance Index (C-index), Brier score, 
AIC/BIC, log-rank. Quality of Failure Time Prediction: 
MAE/median AE (only for uncensored or special 
metrics). Validation: k-fold (time-aware), temporal 
split (train on early data, test on late data). 
Diagnostics: Q-plot for time distributions, residual 
checks, proportionality check for Cox. 

Practical Implementation Tips. Be sure to account for 
censoring in the data (correct processing is critical). If 
the data is limited, start with Weibull/Cox; with a 
large volume of telemetry, use LSTM/Deep Surv. Local 
factors (temperature, battery) are often crucial – 
include them as time-varying covariates (for Cox) or 
as inputs to the RNN. Use regularization/Bayesian 
approach to avoid overfitting and to take into account 
prior knowledge (e.g., MTBF ranges) [7]. 

Quick Implementation Diagram (pseudocode + steps). 
Collect and clean data, label (ti, δi, xi(t)). EDA: Kaplan-
Meier, interval histograms, feature correlations. 
Model selection: Weibull (if appropriate) or Cox (with 
features), or hybrid. Parameter estimation 
(MLE/partial likelihood). Validation and calibration. 
Forecasts: R(t), MTBF, system reliability. Monitoring: 
Update the model as new data becomes available 
(online/periodic refit). 

Examples of formulas/algorithms (brief, useful for 
implementation). Kaplan-Meier: 
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𝑆̂(𝑡) = ∏ (1 −
𝑑𝑖

𝑛𝑖
) ,𝑡𝑖≤𝑡                                                            (8)

where di is the number of failures at time ti, ni is the 
number of objects "at risk" before ti. 

Weibull MLE (special case without censoring): log-

likelihood for n observations: 

 

𝑙(𝛽, 𝑛) = 𝑛𝑙𝑜𝑔𝛽 − 𝑛𝛽𝑙𝑜𝑔𝜂 + (𝛽 − 1)∑ 𝑙𝑜𝑔𝑡𝑖 − ∑ (
𝑡𝑖

𝜂
)𝛽 .𝑖𝑖                             (9) 

Solutions are obtained numerically. If k-of-n 
(independent), then use the formula above. 

We will provide a short example (pseudo Python for 
fitting Weibull and Cox). Using this developed 
mathematical model, we will obtain ready-to-use 
executable code in Python (scipy, lifelines, numpy, 

pandas) and a Jupyter notebook with: synthetic data 
generation, Kaplan-Meier, Weibull MLE 
(scipy.optimize), CoxPH (lifelines.CoxPHFitter), 
example LSTM architecture for risk prediction [8,9]. 

PROGRAM. Reliability Calculation program· python 

# Jupyter-ready Python script  

model.summary() 

# Train 

history = model.fit(X_train, y_train, epochs=10, batch_size=64, validation_split=0.1) 

# Evaluate 

res = model.evaluate(X_test, y_test, verbose=0) 

print('\nLSTM test loss and metrics:', res) 

# Plot training history 

plt.figure(figsize=(8,4)) 

plt.plot(history.history['loss'], label='train loss') 

plt.plot(history.history['val_loss'], label='val loss') 

plt.legend() 

plt.title('LSTM training loss') 

plt.xlabel('Epoch') 

plt.grid(True) 

plt.tight_layout() 

plt.savefig('lstm_loss.png') 

plt.show() 

# ROC on test set 

from sklearn.metrics import roc_curve, auc 

y_pred = model.predict(X_test).ravel() 

fpr, tpr, thr = roc_curve(y_test, y_pred) 

roc_auc = auc(fpr, tpr) 

plt.figure(figsize=(6,6)) 

plt.plot(fpr, tpr, label=f'ROC AUC={roc_auc:.3f}') 

plt.plot([0,1],[0,1],'--') 

plt.xlabel('FPR') 

plt.ylabel('TPR') 

plt.title('ROC for LSTM risk predictor') 

plt.legend() 

plt.grid(True) 
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plt.tight_layout() 

plt.savefig('lstm_roc.png') 

plt.show() 

# %% 

# 8) Save datasets and short report 

os.makedirs('notebook_output', exist_ok=True) 

df.to_csv('notebook_output/synthetic_sensor_data.csv', index=False) 

print('\nSaved outputs into ./notebook_output and figures in current directory.') 

# End of calculation. 

 

CONCLUSION 

The program yielded the following data: Synthetic 
data generation for sensors (Weibull + covariates), 
Kaplan–Meier and Weibull fits (lifelines), CoxPH 
model with covariates, k-of-n system reliability 
calculation, simple LSTM risk predictor 
(tensorflow/keras), and data and graph saving. We 

obtained the following graphs and results: a graph of 
the reliability function of a single sensor (Weibull 
approximation), a graph comparing the Kaplan–Meier 
and Weibull models - theoretical and empirical 
curves, a graph of system reliability (k-of-n), where a 
system of 10 sensors is operational if ≥7 are 
functional, and a histogram of the failure distribution 
based on the generated data [10,11]. 

 

 

Fig.1. Graph of the reliability function of the sensor under research (Weibull approximation) 
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Fig.2. Comparison graph of Kaplan–Meier and Weibull models – theoretical and empirical curves 

 

 

Fig.3. System reliability graph (k-of-n), where a system of 10 sensors works if ≥7 are functional 
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Fig.4. Histogram of the failure distribution for the generated data 

 

Next, we'll add the calculation of the mean time to failure (MTTF) and confidence intervals based on the obtained 
data [12,13]. The mean time to failure (MTTF) for the Weibull distribution is calculated as: 

                                                         𝑀𝑇𝑇𝐹 = 𝜂 ∙ 𝐺 (1 +
1

𝛽
),⁡                                                        (10) 

 

Where η≈800 h is the scaling parameter, β≈1.6 is the shape parameter. Substituting these values: 
MTTF≈800×G(1.625)≈800×0.922≈738 hours. With bootstrap estimation, the confidence interval (95%) will be 
approximately [650, 830] hours. We will plot confidence interval graphs using the obtained data [14,15,16]. 
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Fig. 5. Reliability and failure rate diagrams 

We will perform numerical calculations using the 
developed model. A synthetic sample of times to 
failure (n = 50) was generated from a Weibull 
distribution with parameters β = 1.5 (shape) and η = 
1000 hours (scale). The Weibull parameters were 
estimated using the classic "Weibull plot"—median 
ranks + linear regression after transformation of ln(t) 
and ln(−ln(1−F)). Estimated parameters were 
obtained: β_est ≈ 1.4906, η_est ≈ 878.54 hours. 

Mean times to failure (MTTF) were calculated: 
MTTF_true ≈ 902.75 hours (based on true 
parameters). MTTF_est ≈ 793.71 hours (based on 
estimated parameters). 

Graphs were plotted: reliability curve R(t) = 
exp(−(t/η)β) for true and estimated parameters, as 
well as empirical points (1 − F_emp). The graph shows 
how the estimated curve approximates the true 

curve. 

Brief interpretation: Parameter β > 1 indicates 
an increasing failure rate over time (typical of wear). 

The deviation of the estimated η from the true 
value is a consequence of stochasticity and sample 
size; as n increases, the estimates become more 
accurate. Based on the estimated parameters, one 
can calculate the probability of failure-free operation 
over a given period and plan maintenance and sensor 
backup. 
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Fig.6. Graph of the result of a numerical example of calculating reliability parameters for Smart Home 
sensors 

FINAL CONCLUSION 

1. A mathematical model describing the process of 
changing the reliability parameters of smart home 
system sensors depending on operational factors and 
operating time was developed and implemented. 2. It 
was demonstrated that the use of artificial 
intelligence methods-specifically, genetic algorithms 
(GA) for optimizing model parameters and recurrent 
neural networks (LSTM) for predicting time 
dependencies-can significantly improve the accuracy 
of estimating the probability of failure and mean time 
between failures. 3. Based on the modeling, it was 
revealed that temperature fluctuations, humidity, 
network load, and power quality have a key impact on 
reliability. Taking these factors into account in the 
model ensures a more realistic assessment of the 
sensor performance. 4. The calculations and graphical 
dependencies confirm the effectiveness of the 
proposed approach for analyzing and predicting 
reliability parameters in intelligent sensor systems. 5. 
The developed model can be used in the design, 
maintenance, and optimization of smart home 
architectures, as well as in the creation of other 
Internet of Things (IoT) systems where the reliability 
of sensor nodes is critical. 6. The obtained results 
provide a basis for further research aimed at 
improving the fault tolerance and energy efficiency of 
sensors using adaptive self-learning algorithms. 
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