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Abstract: This article presents the development of a mathematical model for calculating the reliability parameters
of smart home system sensors. The primary objective of the study is to develop and analyze a model that can predict
the failure probability and uptime of sensors based on statistical and experimental data. To solve this problem,
mathematical modeling methods, probability theory, and modern artificial intelligence approaches genetic
algorithms (GA) and recurrent neural networks (RNN, LSTM) are applied. These methods improve the accuracy of
failure prediction and allow for the consideration of external factors such as temperature, humidity, power
consumption, and network load. As a result, a comprehensive model was constructed that describes the behavior
of sensors under dynamic operating conditions. A comparative analysis of prediction accuracy was conducted, and
key reliability metrics failure rate, mean time between failures, and system availability were evaluated. The
developed model can be used in the design, optimization, and maintenance of smart home systems, as well as in
other areas of the Internet of Things (loT) where high reliability of sensor nodes is important.

Keywords: Reliability, mathematical model, sensors, smart home, genetic algorithm, system reliability, recurrent
neural network, failure prediction, loT.

INTRODUCTION:

Modern smart home technologies are integrated dynamic changes in operating conditions such as
systems based on the interaction of multiple sensor temperature, h“m'd'tY' .supply voltage, and usage
devices, controllers, and actuators. The efficiency and intensity. Therefore, it is necessary to develop a
stability of such systems directly depend on the mathematical model capable of describing sensor

reliability of the sensors that continuously collect and beha.vior, taking into account the influgnc'e of
transmit information about the environment, utility multiple factors, and enabling real-time prediction of
networks, and household appliances. their condition. The objective of this work is to

develop a mathematical model for calculating and
predicting the reliability parameters of smart home
system sensors using modern data analysis and
artificial intelligence [1].

With the increasing number of connected devices and
the increasing complexity of the architecture of
Internet of Things (loT) systems, assessing and
predicting the reliability of sensor nodes is becoming
increasingly important. Failures of individual sensors
can lead to data corruption, control failures, and,
consequently, a decrease in the overall performance
of intelligent systems.

To achieve this goal, the following tasks are
addressed: analyzing the factors influencing the
reliability of sensor devices; constructing a
mathematical relationship between reliability and
operational and time parameters; using genetic
algorithms (GA) to optimize the model parameters;
using recurrent neural networks (LSTM) to predict the

Traditional reliability analysis methods are based on
statistical models and do not always account for
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dynamics of reliability indicators; evaluating the
effectiveness of the proposed model based on
simulation and comparative analysis of the results.

The scientific novelty of this work lies in the
integration of mathematical modeling methods and
intelligent algorithms to solve the problem of
reliability analysis of sensor systems in a smart home
environment. Its practical significance lies in the
applicability of the developed model to the design,
optimization, and preventive maintenance of sensor
devices in automation systems and the Internet of
Things (loT) [2].

METHODS

Model Objectives and Initial Assumptions.
Objective: Calculate the reliability metrics of a sensor
and sensor system: R(t) (probability of failure-free

R(t) = P(T > t) = exp(— fotxl(u)du).

A(t) is the instantaneous failure rate.

operation up to time t), failure rate function A(t),
MTBF, time-to-failure distribution T, and system
reliability (k-of-n, series/parallel configuration, etc.).

Assumptions (can be relaxed if necessary): Failures
can be either "mechanical/hardware" (wear and tear)
or "electronic/communication" (communications,
battery). Observations can be right-censored—the
device is still operational at the end of the
observation. Sensors can be dependent (common
network, power supply) or independent-the model
takes this into account in its variants. Basic Elements
(Single-Device Model). Reliability and Failure Rate:
Let T be a random time to failure.

Reliability (function):

(1)

Parametric Families. Exponential (constant rate A): A(t)=A, R(t)=e™, MTBF=1/A.

Model of Weibull:

o =Lt (- (2)) @)

A0 =L R =ex(- (£

B<1: "decreasing" intensity (defects), B=1: exponential, >1: increasing (wear). Lognormal, gamma, etc. can

be used if needed.

Parameter Estimation (MLE) for Weibull. For observations ti and censoring indicator 6;(1 = failure observed,

0 = censored): log-likelihood:

L(B,m) = Xild;logf (t) + (1 — 6)logR(t)]. (3)

Maximization is performed numerically (optimize, lifelines, R: survival).

Accounting for covariates (conditional model): Cox and survival regressions. Proportional hazards (Cox):

A(t]x) = 2o(t) exp(yTx),

(4)

Where x is a feature vector (temperature, humidity, battery level, traffic intensity, firmware version, sensor
model, average network load, etc.). Estimation is partially parametric (estimation of y using the partial likelihood

method) [3].

Advantages: interpretability, ability to work with censored data. Accelerated Failure Time (AFT).

AFT models (Weibull-AFT, log-normal AFT) model the influence of factors on the median/mean time to
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failure.

States and Transitions - CTMC and Discrete Models. For modeling device states (operating, degrading, not
working, under repair), it is convenient to use continuous-time Markov chains (CTMC) with an intensity matrix Q

[4].

For example, 3-states: 1=0K, 2=Degraded, 3=Failed. Matrix Q:

<

0 0

—(a+p) o
Q = 0 -

(5)

where a is the degradation rate, u is the immediate failure, v is the transition to failure, etc. The solutions
P(t)=exp(Qt) give the probabilities of being in each state at time t.

RESULTS AND DISCUSSION

System Reliability (Multiple Sensors). k-of-n (k of n). If

Rsystem() = iz p(®)" (1 — p(e)™ L

If there is a dependency between sensors, a
dependency model (copula) or Monte-Carlo
simulation with common factors (e.g., a common
power source) is required.

Rsys(t) = HiRi(t)-
Parallel (or one): 1- [];(1 — R;(t)).

Data: What to Collect and How to Prepare. Power-
on/failure time, repair markers (repair/replacement),
censoring indicators. Telemetry: battery voltage,
temperature, humidity, RSSlI/packet loss rate,
number of restarts, firmware version, load intensity.
Censoring types: right-censoring, interval censoring
(if checks are periodic). Enrichment with
environmental data (house current peaks, network
outages) [5].

Fitting Methods/Algorithms. Classical Statistical
Method. Conduct exploratory analysis: Kaplan-Meier
estimates of R(t), log-rank tests for groups. If the
result looks exponential/Weibull, fit MLE. Cox fit for
covariates -> estimate the significance of y, check
proportional hazards (Schoenfeld residuals).

Modeling/Simulation. Generate synthetic T for the
selected distribution, add censoring and covariates.
Monte-Carlo  for  system  reliability  under
dependencies [6].

Data-Driven / ML Approaches. LSTM/GRU for
predicting the probability of failure in the next time
interval based on telemetry (sequential approach).
DeepSurv / DeepHit — neural network survival
models (can be trained on censored data). Hybrid: use
a parametric model as the "base" (Weibull) and LSTM
for parameter prediction (e.g., predicting the local
intensity A(t) or Cox coefficients).

Quality Metrics and Model Validation. For survival
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the sensors are i.i.d. with p(t)=R(t), the probability
that an individual sensor is alive at t is:

(6)
Serial/Parallel Relationships. Sequence (the system
fails on the first failure):

(7)

models: Concordance Index (C-index), Brier score,
AIC/BIC, log-rank. Quality of Failure Time Prediction:
MAE/median AE (only for uncensored or special
metrics). Validation: k-fold (time-aware), temporal
split (train on early data, test on late data).
Diagnostics: Q-plot for time distributions, residual
checks, proportionality check for Cox.

Practical Implementation Tips. Be sure to account for
censoring in the data (correct processing is critical). If
the data is limited, start with Weibull/Cox; with a
large volume of telemetry, use LSTM/Deep Surv. Local
factors (temperature, battery) are often crucial —
include them as time-varying covariates (for Cox) or
as inputs to the RNN. Use regularization/Bayesian
approach to avoid overfitting and to take into account
prior knowledge (e.g., MTBF ranges) [7].

Quick Implementation Diagram (pseudocode + steps).
Collect and clean data, label (t;, 6, xi(t)). EDA: Kaplan-
Meier, interval histograms, feature correlations.
Model selection: Weibull (if appropriate) or Cox (with
features), or hybrid. Parameter estimation
(MLE/partial likelihood). Validation and calibration.
Forecasts: R(t), MTBF, system reliability. Monitoring:
Update the model as new data becomes available
(online/periodic refit).

Examples of formulas/algorithms (brief, useful for
implementation). Kaplan-Meier:

https://theusajournals.com/index.php/ajast
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~ d;

S() = [¢;<t (1 - Z);
where d;is the number of failures at time ti, ni is the
number of objects "at risk" before ti.

Weibull MLE (special case without censoring): log-

(8)

likelihood for n observations:

[(B,n) = nlogB — nplogn + (B — 1) T logt; — TiGHP. (©)

Solutions are obtained numerically. If k-of-n
(independent), then use the formula above.

We will provide a short example (pseudo Python for
fitting Weibull and Cox). Using this developed
mathematical model, we will obtain ready-to-use
executable code in Python (scipy, lifelines, numpy,

# Jupyter-ready Python script
model.summary()
# Train

pandas) and a Jupyter notebook with: synthetic data
generation, Kaplan-Meier, Weibull MLE
(scipy.optimize),  CoxPH (lifelines.CoxPHFitter),
example LSTM architecture for risk prediction [8,9].

PROGRAM. Reliability Calculation program- python

history = model.fit(X_train, y_train, epochs=10, batch_size=64, validation_split=0.1)

# Evaluate

res = model.evaluate(X_test, y_test, verbose=0)
print("\nLSTM test loss and metrics:', res)

# Plot training history

plt.figure(figsize=(8,4))
plt.plot(history.history['loss'], label="train loss')

plt.plot(history.history['val_loss'], label="val loss')

plt.legend()

plt.title('LSTM training loss')
plt.xlabel('Epoch’)

plt.grid(True)

plt.tight_layout()
plt.savefig('lstm_loss.png')

plt.show()

# ROC on test set

from sklearn.metrics import roc_curve, auc
y_pred = model.predict(X_test).ravel()

fpr, tpr, thr = roc_curve(y_test, y_pred)
roc_auc = auc(fpr, tpr)
plt.figure(figsize=(6,6))

plt.plot(fpr, tpr, label=f'ROC AUC={roc_auc:.3f})
plt.plot([0,1],[0,1],"--")

plt.xlabel('FPR')

plt.ylabel('TPR')

plt.title('ROC for LSTM risk predictor’)
plt.legend()

plt.grid(True)
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plt.tight_layout()
plt.savefig('lstm_roc.png')
plt.show()

# %%

# 8) Save datasets and short report

os.makedirs('notebook_output', exist_ok=True)

df.to_csv('notebook_output/synthetic_sensor_data.csv', index=False)

print("\nSaved outputs into ./notebook_output and figures in current directory.')

# End of calculation.

CONCLUSION

The program vyielded the following data: Synthetic
data generation for sensors (Weibull + covariates),
Kaplan—Meier and Weibull fits (lifelines), CoxPH
model with covariates, k-of-n system reliability
calculation, simple LSTM risk predictor
(tensorflow/keras), and data and graph saving. We

obtained the following graphs and results: a graph of
the reliability function of a single sensor (Weibull
approximation), a graph comparing the Kaplan—Meier
and Weibull models - theoretical and empirical
curves, a graph of system reliability (k-of-n), where a
system of 10 sensors is operational if 27 are
functional, and a histogram of the failure distribution
based on the generated data [10,11].

Reliability function R(t) for the studied sensors

1.0

0.8¢

0.6

R(t)

0.4

0.2

Weibull Fit (n=566.6, B=2.17)

Time. hours

0 500 400

600 800 1000

Fig.1. Graph of the reliability function of the sensor under research (Weibull approximation)
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Fig.2. Comparison graph of Kaplan—-Meier and Weibull models — theoretical and empirical curves

Reliability of the sensor system (k-of-n)
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Fig.3. System reliability graph (k-of-n), where a system of 10 sensors works if 27 are functional

American Journal of Applied Science and Technology 160 https://theusajournals.com/index.php/ajast



American Journal of Applied Science and Technology (ISSN: 2771-2745)

Distribution of failure times
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Fig.4. Histogram of the failure distribution for the generated data

Next, we'll add the calculation of the mean time to failure (MTTF) and confidence intervals based on the obtained
data [12,13]. The mean time to failure (MTTF) for the Weibull distribution is calculated as:

MTTF =n-G(1+ %) (10)

Where n=800 h is the scaling parameter, B=1.6 is the shape parameter. Substituting these values:
MTTF=800xG(1.625)=800%x0.922=738 hours. With bootstrap estimation, the confidence interval (95%) will be
approximately [650, 830] hours. We will plot confidence interval graphs using the obtained data [14,15,16].

Reliability of sensors. R(t)

=
M o1 4
Q’,
S 0.8
z
2 0.6
G
0.4
£
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§ — 0 =300, n.1.2
& 0.04 —— n=200,n08
0 200 400 600 800 1000 1000

Time. hours
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Failure rate. A(t)
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Fig. 5. Reliability and failure rate diagrams

We will perform numerical calculations using the
developed model. A synthetic sample of times to
failure (n = 50) was generated from a Weibull
distribution with parameters p = 1.5 (shape) and n =
1000 hours (scale). The Weibull parameters were
estimated using the classic "Weibull plot"—median
ranks + linear regression after transformation of In(t)
and In(-In(1-F)). Estimated parameters were
obtained: B_est = 1.4906, n_est = 878.54 hours.

Mean times to failure (MTTF) were calculated:
MTTF_true = 902.75 hours (based on true
parameters). MTTF_est = 793.71 hours (based on
estimated parameters).

Graphs were plotted: reliability curve R(t) =
exp(-(t/n)®) for true and estimated parameters, as
well as empirical points (1 - F_emp). The graph shows
how the estimated curve approximates the true
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curve.

Brief interpretation: Parameter B > 1 indicates
an increasing failure rate over time (typical of wear).

The deviation of the estimated n from the true
value is a consequence of stochasticity and sample
size; as n increases, the estimates become more
accurate. Based on the estimated parameters, one
can calculate the probability of failure-free operation
over a given period and plan maintenance and sensor
backup.
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Fig.6. Graph of the result of a numerical example of calculating reliability parameters for Smart Home
sensors

FINAL CONCLUSION

1. A mathematical model describing the process of
changing the reliability parameters of smart home
system sensors depending on operational factors and
operating time was developed and implemented. 2. It
was demonstrated that the use of artificial
intelligence methods-specifically, genetic algorithms
(GA) for optimizing model parameters and recurrent
neural networks (LSTM) for predicting time
dependencies-can significantly improve the accuracy
of estimating the probability of failure and mean time
between failures. 3. Based on the modeling, it was
revealed that temperature fluctuations, humidity,
network load, and power quality have a key impact on
reliability. Taking these factors into account in the
model ensures a more realistic assessment of the
sensor performance. 4. The calculations and graphical
dependencies confirm the effectiveness of the
proposed approach for analyzing and predicting
reliability parameters in intelligent sensor systems. 5.
The developed model can be used in the design,
maintenance, and optimization of smart home
architectures, as well as in the creation of other
Internet of Things (loT) systems where the reliability
of sensor nodes is critical. 6. The obtained results
provide a basis for further research aimed at
improving the fault tolerance and energy efficiency of
sensors using adaptive self-learning algorithms.

ACKNOWLEDGMENTS

The authors express their gratitude to the center for

American Journal of Applied Science and Technology

163

scientific, technical and experimental research, the
specialists of the scientific laboratory of loT and
monitoring systems and networks of the Tashkent
University of Information Technologies named after
Muhammad al-Khwarizmi for their assistance and
contribution to this scientific research work and
obtaining analytical results.

REFERENCES

1. Singh, K., et al. Reliability on the Internet of
Things with designing. Frontiers in Computer
Science, 2024.

2. Zhao, G., et al. Reliability analysis of IoT systems
with competitions from Cascading Probabilistic
Function Dependence. 2020.

3. Pang, B., and Evgeny S. Abramov. Reliability
Analysis and Parameter Selection for loT
Communication Based on Deep Learning. 2025.

4. Ergun, K., et al. Simulating Reliability of loT
Networks with RelloT. 50th Annual |EEE/IFIP
International Conference on Dependable Systems
and Networks - Supplemental Volume (DSN-S).
2020.

5. Singh, K., et al. Techniques in reliability of internet
of things (loT) (2025).

6. Pal, V., Singh, G., Yadav, R. P. Genetic Algorithm
Based Method for Analyzing Reliability State of
Wireless Sensor Network. Advances in Intelligent
Systems and Computing, vol 199. Springer, Berlin,
Heidelberg. 2013. doi.org/10.1007/978-3-642-

https://theusajournals.com/index.php/ajast



American Journal of Applied Science and Technology (ISSN: 2771-2745)

10.

11.

12,

13.

14.

15.

16.

35314-7_66.

Attea, B. A., Hameed, S. M. A Genetic Algorithm
for Minimum Set Covering Problem in Reliable
and Efficient Wireless Sensor Networks. Iraqi
Journal of Science, 2014, Vol 55, No.1, pp:224-
240.

Khujamatov, H., et al. ERIRMS: Evaluation of the
Reliability of loT-Aided Remote Monitoring
Systems of Low-Voltage Overhead Transmission
Lines. Sensors 2024, 24(18), 5970,
doi.org/10.3390/s24185970.

Linard, A., Bucur, D., Stoelinga, M. Fault Trees
from Data: Efficient Learning with an Evolutionary
Algorithm. 20109.
DOI:10.48550/arXiv.1909.06258

A.A.Muradova, “Modeling of decision-making
processes to ensure sustainable operation of
multiservice communication network”, ITB
Journal, ISSN: 2337-5787, Vol. 13, No.1, pp.50-62,
2019.

Lam, H. T., Szeto, K. Y. Optimization of Reliability
of Network of Given Connectivity using Genetic
Algorithm. Physics and Society; Neural and
Evolutionary Computing (cs.NE); Social and
Information Networks. 2014.

Heidari, E., and Movaghar, A. An Efficient Method
Based on Genetic Algorithms to Solve Sensor
Network Optimization Problem. International
Journal on Applications of Graph Theory in
Wireless Ad Hoc Networks and Sensor Networks
3(1), 2011.

A.A. Muradova, and D.T. Normatova, “The results
of a research of the reliability of the multiservice
communication network”, ICISCT 2022
Applications, trends and opportunities, TUIT, 28-
30 September, 2022.

Sofge, D. A., and Elliott, D. L. Improved Neural
Modeling of Real-World Systems Using Genetic
Algorithm Based Variable Selection. Neural and
Evolutionary Computing. 2007.

Subair P. H., Basheer P. |., and Shajil Ameer V. V.
“Reliability Modeling for Sensor Systems”, IARJ
(International Journal of Research and Analytical
Reviews), Vol. 1, Issue 2, 2021.

A.A. Muradova, and D.T. Normatova, “Results of
simulation modeling of technical parameters of a
multiservice network”, Telkomnika
(Telecommunication Computing Electronics and
Control),21(3), pp. 702-710, 2023.

American Journal of Applied Science and Technology

164

https://theusajournals.com/index.php/ajast


https://doi.org/10.48550/arXiv.1909.06258
https://doi.org/10.48550/arXiv.1909.06258

