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Abstract: This paper presents the implementation of a compiler that translates arithmetic expressions into native
machine code using the LLVM compiler infrastructure's Python API. This work demonstrates a complete compilation
pipeline. It converts high-level arithmetic expressions into native assembly code using llvmlite, which is the Python
binding for LLVM. The compiler performs several tasks. It handles lexical analysis, parsing with operator
precedence, constructing the abstract syntax tree, and generating LLVM IR. By connecting native execution and
interpreted Python code, the system allows for compilation without the delays of interpretation. This work sets the
stage for future experiments in Python-to-native compilation. It also helps us understand how to access modern

compiler infrastructures programmatically.
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INTRODUCTION:

Modern computing requires both developer
efficiency and performance. Python offers great
productivity due to its high-level features and
dynamic nature, but this affects its execution speed.
In contrast, compiled languages like C and C++ deliver
native performance, but they need more detailed
code and longer development times. The difference
between these approaches has inspired many
projects that try to combine Python's user-
friendliness with the speed of native code.

The LLVM compiler infrastructure has become a key
technology in this area. Projects like Numba use LLVM
to translate Python code into native machine
instructions, achieving performance close to statically
compiled languages. Still, many developers find the
ways these tools work unclear. To grasp the process
of converting source code to machine instructions,
hands-on experience is necessary.

The initial implementation used a straightforward
stack-based method to create assembly directly from
parsed expressions. While this approach worked, it
had limitations in scope and portability. Further
research, particularly focusing on Hoyt's work about
generating x86-64 assembly from Python, showed
that higher-level intermediate representations could
offer  better abstraction and optimization
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opportunities.

Exploring LLVM's Python APl through Ilvmlite
revealed that accessing modern compiler
infrastructure programmatically is relatively easy.
This insight changed the project's focus from direct
assembly generation to using LLVM's advanced
compilation pipeline. The result is a system that
converts arithmetic expressions through lexical
analysis and parsing into LLVM intermediate
representation, which LLVM compiles to native
machine code for any supported target architecture.

This paper outlines the complete implementation of
an arithmetic expression compiler using LLVM
infrastructure. It deals with operator precedence,
supports parentheses, checks for compile-time
errors, and produces optimized native code. The
project reuses lexer and parser components from
Gustav, a previously created interpreter, showcasing
how compiler and interpreter implementations can
share common front-end elements.

METHODS
LLVM Compiler Infrastructure

LLVM is a set of modular and reusable compiler and
toolchain technologies. It started as a research
project at the University of lllinois and has become
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the foundation for several production compilers,
including Clang, Swift, Rust, and Julia [3]. The name
originally stood for "Low Level Virtual Machine", but
the project has expanded well beyond virtual
machine technology, making the acronym less
relevant.

The main innovation of LLVM is its intermediate
representation, known as LLVM IR. This is a low-level
programming language similar to assembly but with
key differences. LLVM IR is platform-independent,
strongly typed, and designed for optimization.
Programs written in LLVM IR can be compiled to
native code for any architecture that LLVM supports,

define 132 @main() {
entry:
%add_tmp = add i64 2, 3
%result = call 132 (18x,
ret 132 @

This IR defines a main function that adds two 64-bit
integers, prints the result, and returns zero. The
syntax clearly names temporary values like
%add_tmp and specifies types like i64 for 64-bit
integers.

The LLVM compilation pipeline includes several
stages:

e First, source code is translated to LLVM IR. This IR
can be in a textual format that is easy for humans
to read or in binary bitcode format for efficiency.

e Second, optimization passes change the IR to
improve performance while keeping the same
meaning. LLVM has many optimization passes
that use techniques like dead code removal,
constant propagation, loop unrolling, and
function inlining.

e Third, code generation converts the optimized IR
to assembly code for the target architecture.
Finally, an assembler turns assembly into
machine code in object file format, and a linker
combines object files into executable programs.

LLVM's modular design lets developers use only the
parts they need. A compiler front-end can create
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including x86, ARM, RISC-V, and others [4].

LLVM IR uses a three-address code format, where
most instructions have clear source and destination
operands. For instance, an addition operation takes
two input values and produces one output value, with
all three named explicitly. This clarity makes analysis
and transformation easier than with stack-based or
implicit register models. The language follows Static
Single Assignment form, meaning each variable is
assigned only once, which simplifies many
optimization algorithms [5].

A simple example shows LLVM IR syntax:

... ) @printf(i8+ %fmt, 164 %add_tmp)

LLVM IR and let LLVM manage optimization and code
generation, which saves the trouble of implementing
these complex phases on their own. This separation is
what makes LLVM a good fit for projects like this one.

Python Interface to LLVM

The llvmlite library offers Python bindings to LLVM's
core features [6]. Unlike previous Python LLVM
bindings that revealed the entire C++ API, llvmlite
targets a lightweight, user-friendly interface for the
most commonly used functions. This approach
simplifies learning and usage while still delivering
enough power for compiler implementation. The
llvmlite library has two main components. The IR
builder API lets users build LLVM IR programmatically
with Python objects and methods. The binding API
provides access to LLVM's compilation and execution
services, which include parsing IR, running
optimization passes, and generating native code.

To create LLVM IR, developers make Python objects
that represent modules, functions, basic blocks, and
instructions. The following code shows how to
construct basic IR:

https://theusajournals.com/index.php/ajast



American Journal of Applied Science and Technology (ISSN: 2771-2745)

from 1lvmlite import ir

int32
int64

ir.IntType(32)
ir.IntType(64)

module = ir.Module(name="example")

func_type =
func =

ir.FunctionType(int32, [1)

This code creates a module with a main function that
includes a single basic block. Inside this block, it adds
two constants and returns zero.

Type safety runs throughout the llvmlite API. Every
value in LLVM IR has a specific type, and operations
can only occur on compatible types. For instance,
adding two 64-bit integers requires both operands to
be specifically typed as i64. This strong typing helps
catch many errors during IR construction instead of at
later stages of compilation.

The binding APl manages the compilation pipeline.
After constructing the IR with the builder API, the
code calls binding functions to convert the textual IR

ir.Function(module, func_type, name="main")

representation into LLVM's internal format.
2+3%4
2 + 3 S 4 || EOF

movq $3, %rax

block = func.append_basic_block(name="entry")
builder = ir.IRBuilder(block)

left = ir.Constant(int64, 2)
right = ir.Constant(int64, 3)
result = builder.add(left, right, name="add_tmp")

zero = ir.Constant(int32, 0)
builder.ret(zero)

Verification functions ensure the IR is well-formed
and semantically correct. Optimization passes can be
applied by creating pass managers and filling them
with the desired transformations. Finally, code
generation functions create assembly or machine
code for specified target architectures.

System Architecture

The compiler implementation uses a traditional
pipeline architecture with four main stages: lexical
analysis, syntax analysis, code generation, and
assembly emission. This structure keeps concerns
separate, allowing each stage to be tested and
modified independently. Figure 1 shows the
compilation pipeline from source expression to native
executable.

%mul_tmp

mul 164 3, 4

imulq $4, %rax |e
addq $2, %rax

l

Executable
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%add_tmp = add i64 2, %mul_tmp
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Lexical analysis converts input strings into token
sequences. The Lexer class keeps track of the current
position and uses a simple state machine to recognize
patterns.

The number tokenization method demonstrates the
lexer's approach:

def number_token(self) — Token:
while self.peek().isdigit():

self.next_char()

if self.peek() = "." and self.peek_next().isdigit():
msg = "Can support integers only"
raise CompileError(msg)

part = self.source[self.start :

self.current]

return self.new_token(TT.NUMBER, int(part))

This method processes consecutive digits, specifically
rejects floating-point numbers, and generates tokens
with parsed integer values.

Syntax analysis builds an abstract syntax tree from

tokens. The Parser class uses recursive descent [7],
where grammar rules correspond to methods.
Operator precedence is embedded in the parser's
structure through the hierarchy of method calls.

def parse_term(self) — Expression:
expr = self.parse_factor()

while self.match(TT.MINUS, TT.PLUS):

operator: Token

= self.get _previous()

right: Expression = self.parse_factor()
expr = Binary(expr, operator, right)

return expr

def parse_factor(self) — Expression:
expr = self.parse_unary()

while self.match(TT.SLASH, TT.STAR):

operator: Token

= self.get_previous()

right: Expression = self.parse_unary()
expr = Binary(expr, operator, right)

return expr

The parse_term method manages addition and
subtraction by calling parse_factor for the operands.
Since parse_factor takes care of multiplication and
division, these operations have a higher priority than
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addition. This ensures the right order of operations
without needing tables.

The AST nodes use Python dataclasses, which help
with immutability and memory efficiency.
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@dataclass(frozen=True, slots=True, eq=False)
class Binary(Expression):

left: Expression

operator: Token

right: Expression

@t.override
def accept[T](self, visitor: "ASTVisitor[T]") — T:
return visitor.visit binary_expression(self)

@dataclass(frozen=True, slots=True, eg=False)
class Literal(Expression):
value: int

@t.override
def accept[T](self, visitor: "ASTVisitor[T]") — T:

return visitor.visit literal expression(self)
generation walks the AST and produces LLVM IR. The
CodeGenerator class holds an IRBuilder reference for
creating instructions:

The visitor pattern [8] separates tree traversal from
operations. Each node implements accept, which
sends the call to the right visitor method. Code
def visit binary expression(self, expression: "Binary") — ir.Instruction:

lhs, rhs = self.visit(expression.left), self.visit(expression.right)

match expression.operator.type:
case TT.PLUS:
return self.builder.add(lhs, rhs, name="add_tmp")
case TT.MINUS:
return self.builder.sub(lhs, rhs, name="sub_tmp")
case TT.STAR:
return self.builder.mul(lhs, rhs, name="mul_tmp")
case TT.SLASH:
if isinstance(rhs, ir.Constant) and rhs.constant = 0:
lhs_val = (
lhs.constant if isinstance(lhs, ir.Constant) else "computed"
)
msg = f"Division by zero: {lhs_val} / @"
raise CompileError(msg)

return self.builder.sdiv(lhs, rhs, name="div_tmp")
case _:
raise NotImplementedError(expression.operator)

Binary operations visit operands one by one and then The main function setup shows the LLVM module
create the right instructions. Literals turn into LLVM structure.
constants. Unary negation is done by subtracting

This creates a module with a main function returning
from zero, using existing arithmetic.

32-bit integers, initializes native target support, and
sets the target triple for the current platform.
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def setup_llvm() — tuple[ir.IRBuilder, ir.Module]:
binding.initialize native target()
binding.initialize native_asmprinter()

module = ir.Module(name="expr_module™)

func_ty = ir.FunctionType(INT 32, ())

func = ir.Function(module, func_ty, name="main")
block = func.append_basic_block(name="entry")
builder = ir.IRBuilder(block)

module.triple = binding.get default_triple()

return builder, module

Implementation Details

The complete implementation consists of

approximately ~400 lines of Python code. Type
constants are defined at module level:

INT 8 = ir.IntType(8)

INT_32 = ir.IntType(32)

INT_64 = ir.IntType(64)

ZERO 32 = ir.Constant(INT_ 32, 0)
ZERO 64 = ir.Constant(INT_64, @)

Using 64-bit integers for arithmetic prevents overflow
on reasonable inputs and remains efficient on
modern processors. The system generates both LLVM
IR (.II files) and assembly (.s files) for inspection. You
can compile the generated assembly with standard
tools:

S python3 main.py

Expr>2+3*4

# Generates expression.ll and expression.s
S gcc expression.s -0 expression (or clang)

S ./expression

target triple = "x86_64-pc-linux-gnu"
target datalayout = ""

define i32 @"main" ()

{

entry:
%"add_tmp" = add i64 2, 3
%"mul_tmp" = mul i64 %"add_tmp", 4

2+3*%4=14

The compilation workflow integrates with existing

toolchains, producing standalone executables
without runtime dependencies.
RESULTS

The compiler successfully translates arithmetic
expressions into native code. Testing covered simple
arithmetic, operator precedence, parentheses, and
unary negation. All tests produced correct results
verified by executing generated executables.

For the expression “(2 + 3) * 4”, generated LLVM IR:

%".2" = getelementptr inbounds [16 x i8], [16 x i8]+ @"format _str", i32 @, i32 0
%".3" = call i32 (i8%, ...) @"printf"(i8+ %".2", i64 %"mul_tmp")

ret i32 @
}

declare i32 @"printf"(i8= %".1", ...)

@"format_str" = private constant [16 x i8] c"(2+3)*4 = %11d\0a\eo"

American Journal of Applied Science and Technology

https://theusajournals.com/index.php/ajast



American Journal of Applied Science and Technology (ISSN: 2771-2745)

Execution example showing compilation and running of the program:
) 10n3 main.py

Expr> (10+5)*2-3

2025-16-19 ©0:50:16,186 INFO: [PARSED AST]

=<TT.MINUS: 'minus'=>
)

2025-10-19 00:54:16,210 INFO: [GENERATED LLVM IR]

6_6U-pc-linux—g

_tmp", 2
_tmp", 3
[19

..) @"printf"(

d\ea\eg"

file <
.section "axl", @progbits
.globl main
.p2align u
.type main,@function
main:
.cfi_startproc
pushq
.cfi_d
movab
mova
movl
xorl
callq
xorl
popq
.cfi_def_cfa_offset 8
retq
.Lfunc_end®:
.size  main, .Lfi end@-main
.cfi_endproc

.type .Lformat_str, @object
.section "al", @progbits
.p2align

.Lformat_str:
.asciz "(10+5
.size .Lfo

.section ".note.GNU-stack","", @progbits

2025-10-19 00:54:16,2U7 INFO: Saved into L1_filename='expression.ll' asm_filename='expression.s
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=]
[

> clang -o expression expression.ll

The generated assembly integrates with standard
toolchains. Executables run independently without
Python or LLVM runtime dependencies. Compilation
time averages under 100 milliseconds for simple
expressions on modern hardware.

DISCUSSION

This project shows that creating a compiler with
modern tools is possible for developers who may not
have a deep background in compilers. By using LLVM
for optimization and code generation, the focus is on
front-end tasks: lexing, parsing, and generating
intermediate representation (IR).

Reusing the lexer and parser code from the Gustav
interpreter highlights an important point. Compilers
and interpreters share front-end tools but differ
mainly in how they process abstract syntax trees
(ASTs). This project produces LLVM IR, which Gustav
interprets directly. However, both use the same
token definitions and parsing rules. This similarity
suggests that programming languages can support
both interpretation and compilation with mostly
shared code.

Using LLVM IR as the target representation offers
clear advantages. LLVM takes care of details specific
to different architectures, such as instruction
selection, register allocation, and calling conventions.
Changing the target configuration in LLVM allows the
same code to produce x86, ARM, and RISC-V
assembly. Achieving this level of portability with
direct assembly generation would be challenging.

LLVM's strong typing helped catch several
development errors. Errors like mismatched types
between instruction operands, incorrect function
signatures, and poorly formed constants prompted
clear messages during verification. This quick
feedback sped up development compared to
troubleshooting mistakes in incorrect assembly
output.

The project's simplicity shows that Python works
well(in such a smaller scale of course) for building
compilers, and llvmlite is effective for this purpose.
The entire compiler fits in a single ~400-line file, and
the code remains readable and easy to maintain
without losing functionality.

Currently, the project only supports integer
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arithmetic with four basic operations. For real-world
applications, variables, control flow, functions, and
many other features are necessary. The error
handling identifies clear mistakes but offers limited
guidance. Division by zero detection works only for
constants known at compile time, while complete
detection would require complex static analysis or
checks during runtime.

Future developments could expand the language by
adding variables that would need symbol tables and
memory operations. Managing control flow
structures would require basic block management
and branch instructions. Introducing functions would
involve calling conventions and managing stack
frames. Integrating with the Gustav interpreter could
allow hybrid interpretation during development
while enabling compilation for production, combining
Python's fast development speed with the
performance of native code.

The broader context of compiling Python to native
code makes this work significant. Projects like Numba
and Triton use similar methods on a larger scale.
Learning how simple arithmetic compiles to LLVM IR
lays the groundwork for understanding how these
more complex systems function.

CONCLUSION

This work presents a functional compiler that
translates arithmetic expressions to native machine
code using LLVM infrastructure. The implementation
shows that modern compiler tools make compilation
projects easier for developers with moderate
experience. By using llvmlite to access LLVM's
compilation pipeline, the project achieves native code
generation without complicated optimization and
code generation phases.

The compiler correctly handles operator precedence,
supports parenthetical grouping, performs compile-
time error checking, and generates efficient assembly
code. The architecture follows standard compiler
design, with lexical analysis, parsing, and code
generation as separate stages. The visitor pattern
allows for extending AST processing without changing
node classes. Strong typing throughout catches errors
early in development.

The project started from observations during a
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lecture and evolved through multiple iterations.
Initial stack-based assembly generation shifted to
LLVM-based compilation after researching available
tools. Code reuse from the Gustav interpreter project
shows how front-end components can be shared
between interpreters and compilers.

The results indicate that the generated code is correct
and efficient. LLVM's optimizations produce assembly
that is comparable to hand-written code. The system
compiles expressions quickly and works well with
standard build tools. Error messages provide enough
information for users to identify and fix problems.

Future work will add variables, control flow, and
functions to the language. Integrating with the Gustav
interpreter would allow for hybrid interpretation and
compilation. Experiments with optimization passes
could show LLVM's transformation capabilities. The
foundation established here supports these
extensions while also serving as a valuable standalone
demonstration of compilation techniques.

The importance of this work goes beyond the specific
implementation. Understanding how arithmetic
expressions compile to native code offers insight into
how larger systems like Numba and Triton operate.
This  project demonstrates that compiler
construction, often seen as specialized and
challenging, can be tackled step by step using modern
tools. This accessibility benefits both education and
the development of new language implementations.
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