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Abstract: This paper presents the implementation of a compiler that translates arithmetic expressions into native 
machine code using the LLVM compiler infrastructure's Python API. This work demonstrates a complete compilation 
pipeline. It converts high-level arithmetic expressions into native assembly code using llvmlite, which is the Python 
binding for LLVM.  The compiler performs several tasks. It handles lexical analysis, parsing with operator 
precedence, constructing the abstract syntax tree, and generating LLVM IR. By connecting native execution and 
interpreted Python code, the system allows for compilation without the delays of interpretation. This work sets the 
stage for future experiments in Python-to-native compilation. It also helps us understand how to access modern 
compiler infrastructures programmatically. 
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INTRODUCTION:

Modern computing requires both developer 
efficiency and performance. Python offers great 
productivity due to its high-level features and 
dynamic nature, but this affects its execution speed. 
In contrast, compiled languages like C and C++ deliver 
native performance, but they need more detailed 
code and longer development times. The difference 
between these approaches has inspired many 
projects that try to combine Python's user-
friendliness with the speed of native code. 

The LLVM compiler infrastructure has become a key 
technology in this area. Projects like Numba use LLVM 
to translate Python code into native machine 
instructions, achieving performance close to statically 
compiled languages. Still, many developers find the 
ways these tools work unclear. To grasp the process 
of converting source code to machine instructions, 
hands-on experience is necessary. 

The initial implementation used a straightforward 
stack-based method to create assembly directly from 
parsed expressions. While this approach worked, it 
had limitations in scope and portability. Further 
research, particularly focusing on Hoyt's work about 
generating x86-64 assembly from Python, showed 
that higher-level intermediate representations could 
offer better abstraction and optimization 

opportunities. 

Exploring LLVM's Python API through llvmlite 
revealed that accessing modern compiler 
infrastructure programmatically is relatively easy. 
This insight changed the project's focus from direct 
assembly generation to using LLVM's advanced 
compilation pipeline. The result is a system that 
converts arithmetic expressions through lexical 
analysis and parsing into LLVM intermediate 
representation, which LLVM compiles to native 
machine code for any supported target architecture. 

This paper outlines the complete implementation of 
an arithmetic expression compiler using LLVM 
infrastructure. It deals with operator precedence, 
supports parentheses, checks for compile-time 
errors, and produces optimized native code. The 
project reuses lexer and parser components from 
Gustav, a previously created interpreter, showcasing 
how compiler and interpreter implementations can 
share common front-end elements. 

METHODS 

LLVM Compiler Infrastructure 

LLVM is a set of modular and reusable compiler and 
toolchain technologies. It started as a research 
project at the University of Illinois and has become 

 

https://doi.org/10.37547/ajast/Volume05Issue10-20
https://doi.org/10.37547/ajast/Volume05Issue10-20
https://doi.org/10.37547/ajast/Volume05Issue10-20
https://doi.org/10.37547/ajast/Volume05Issue10-20
https://numba.pydata.org/
https://numba.pydata.org/
https://github.com/AbduazizZiyodov/gustav
https://github.com/AbduazizZiyodov/gustav


American Journal of Applied Science and Technology 101 https://theusajournals.com/index.php/ajast 

American Journal of Applied Science and Technology (ISSN: 2771-2745) 
 

 

the foundation for several production compilers, 
including Clang, Swift, Rust, and Julia [3]. The name 
originally stood for "Low Level Virtual Machine", but 
the project has expanded well beyond virtual 
machine technology, making the acronym less 
relevant. 

The main innovation of LLVM is its intermediate 
representation, known as LLVM IR. This is a low-level 
programming language similar to assembly but with 
key differences. LLVM IR is platform-independent, 
strongly typed, and designed for optimization. 
Programs written in LLVM IR can be compiled to 
native code for any architecture that LLVM supports, 

including x86, ARM, RISC-V, and others [4]. 

LLVM IR uses a three-address code format, where 
most instructions have clear source and destination 
operands. For instance, an addition operation takes 
two input values and produces one output value, with 
all three named explicitly. This clarity makes analysis 
and transformation easier than with stack-based or 
implicit register models. The language follows Static 
Single Assignment form, meaning each variable is 
assigned only once, which simplifies many 
optimization algorithms [5]. 

A simple example shows LLVM IR syntax: 

 

This IR defines a main function that adds two 64-bit 
integers, prints the result, and returns zero. The 
syntax clearly names temporary values like 
%add_tmp and specifies types like i64 for 64-bit 
integers. 

The LLVM compilation pipeline includes several 
stages: 

● First, source code is translated to LLVM IR. This IR 
can be in a textual format that is easy for humans 
to read or in binary bitcode format for efficiency. 

● Second, optimization passes change the IR to 
improve performance while keeping the same 
meaning. LLVM has many optimization passes 
that use techniques like dead code removal, 
constant propagation, loop unrolling, and 
function inlining. 

● Third, code generation converts the optimized IR 
to assembly code for the target architecture. 
Finally, an assembler turns assembly into 
machine code in object file format, and a linker 
combines object files into executable programs. 

LLVM's modular design lets developers use only the 
parts they need. A compiler front-end can create 

LLVM IR and let LLVM manage optimization and code 
generation, which saves the trouble of implementing 
these complex phases on their own. This separation is 
what makes LLVM a good fit for projects like this one. 

Python Interface to LLVM 

 

 

The llvmlite library offers Python bindings to LLVM's 
core features [6]. Unlike previous Python LLVM 
bindings that revealed the entire C++ API, llvmlite 
targets a lightweight, user-friendly interface for the 
most commonly used functions. This approach 
simplifies learning and usage while still delivering 
enough power for compiler implementation. The 
llvmlite library has two main components. The IR 
builder API lets users build LLVM IR programmatically 
with Python objects and methods. The binding API 
provides access to LLVM's compilation and execution 
services, which include parsing IR, running 
optimization passes, and generating native code. 

To create LLVM IR, developers make Python objects 
that represent modules, functions, basic blocks, and 
instructions. The following code shows how to 
construct basic IR: 
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This code creates a module with a main function that 
includes a single basic block. Inside this block, it adds 
two constants and returns zero. 

Type safety runs throughout the llvmlite API. Every 
value in LLVM IR has a specific type, and operations 
can only occur on compatible types. For instance, 
adding two 64-bit integers requires both operands to 
be specifically typed as i64. This strong typing helps 
catch many errors during IR construction instead of at 
later stages of compilation. 

The binding API manages the compilation pipeline. 
After constructing the IR with the builder API, the 
code calls binding functions to convert the textual IR 
representation into LLVM's internal format. 

Verification functions ensure the IR is well-formed 
and semantically correct. Optimization passes can be 
applied by creating pass managers and filling them 
with the desired transformations. Finally, code 
generation functions create assembly or machine 
code for specified target architectures. 

System Architecture 

The compiler implementation uses a traditional 
pipeline architecture with four main stages: lexical 
analysis, syntax analysis, code generation, and 
assembly emission. This structure keeps concerns 
separate, allowing each stage to be tested and 
modified independently. Figure 1 shows the 
compilation pipeline from source expression to native 
executable. 
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Lexical analysis converts input strings into token 
sequences. The Lexer class keeps track of the current 
position and uses a simple state machine to recognize 
patterns. 

The number tokenization method demonstrates the 
lexer's approach: 

This method processes consecutive digits, specifically 
rejects floating-point numbers, and generates tokens 
with parsed integer values. 

Syntax analysis builds an abstract syntax tree from  

tokens. The Parser class uses recursive descent [7], 
where grammar rules correspond to methods. 
Operator precedence is embedded in the parser's 
structure through the hierarchy of method calls. 

The parse_term method manages addition and 
subtraction by calling parse_factor for the operands. 
Since parse_factor takes care of multiplication and 
division, these operations have a higher priority than 

addition. This ensures the right order of operations 
without needing tables. 

The AST nodes use Python dataclasses, which help 
with immutability and memory efficiency. 
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The visitor pattern [8] separates tree traversal from 
operations. Each node implements accept, which 
sends the call to the right visitor method. Code 

generation walks the AST and produces LLVM IR. The 
CodeGenerator class holds an IRBuilder reference for 
creating instructions: 

 

Binary operations visit operands one by one and then 
create the right instructions. Literals turn into LLVM 
constants. Unary negation is done by subtracting 
from zero, using existing arithmetic. 

 

 

The main function setup shows the LLVM module 
structure.  

This creates a module with a main function returning 
32-bit integers, initializes native target support, and 
sets the target triple for the current platform. 
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Implementation Details 

The complete implementation consists of 

approximately ~400 lines of Python code. Type 
constants are defined at module level: 

 

 

Using 64-bit integers for arithmetic prevents overflow 
on reasonable inputs and remains efficient on 
modern processors. The system generates both LLVM 
IR (.ll files) and assembly (.s files) for inspection. You 
can compile the generated assembly with standard 
tools: 

$ python3 main.py 

Expr> 2 + 3 * 4 

# Generates expression.ll and expression.s 

$ gcc expression.s -o expression (or clang) 

$ ./expression 

2 + 3 * 4 = 14 

The compilation workflow integrates with existing 
toolchains, producing standalone executables 
without runtime dependencies. 

RESULTS 

The compiler successfully translates arithmetic 
expressions into native code. Testing covered simple 
arithmetic, operator precedence, parentheses, and 
unary negation. All tests produced correct results 
verified by executing generated executables. 

For the expression “(2 + 3) * 4”, generated LLVM IR: 
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Execution example showing compilation and running of the program: 
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The generated assembly integrates with standard 
toolchains. Executables run independently without 
Python or LLVM runtime dependencies. Compilation 
time averages under 100 milliseconds for simple 
expressions on modern hardware. 

DISCUSSION 

This project shows that creating a compiler with 
modern tools is possible for developers who may not 
have a deep background in compilers. By using LLVM 
for optimization and code generation, the focus is on 
front-end tasks: lexing, parsing, and generating 
intermediate representation (IR). 

Reusing the lexer and parser code from the Gustav 
interpreter highlights an important point. Compilers 
and interpreters share front-end tools but differ 
mainly in how they process abstract syntax trees 
(ASTs). This project produces LLVM IR, which Gustav 
interprets directly. However, both use the same 
token definitions and parsing rules. This similarity 
suggests that programming languages can support 
both interpretation and compilation with mostly 
shared code. 

Using LLVM IR as the target representation offers 
clear advantages. LLVM takes care of details specific 
to different architectures, such as instruction 
selection, register allocation, and calling conventions. 
Changing the target configuration in LLVM allows the 
same code to produce x86, ARM, and RISC-V 
assembly. Achieving this level of portability with 
direct assembly generation would be challenging. 

LLVM's strong typing helped catch several 
development errors. Errors like mismatched types 
between instruction operands, incorrect function 
signatures, and poorly formed constants prompted 
clear messages during verification. This quick 
feedback sped up development compared to 
troubleshooting mistakes in incorrect assembly 
output. 

The project's simplicity shows that Python works 
well(in such a smaller scale of course) for building 
compilers, and llvmlite is effective for this purpose. 
The entire compiler fits in a single ~400-line file, and 
the code remains readable and easy to maintain 
without losing functionality. 

Currently, the project only supports integer 

arithmetic with four basic operations. For real-world 
applications, variables, control flow, functions, and 
many other features are necessary. The error 
handling identifies clear mistakes but offers limited 
guidance. Division by zero detection works only for 
constants known at compile time, while complete 
detection would require complex static analysis or 
checks during runtime. 

Future developments could expand the language by 
adding variables that would need symbol tables and 
memory operations. Managing control flow 
structures would require basic block management 
and branch instructions. Introducing functions would 
involve calling conventions and managing stack 
frames. Integrating with the Gustav interpreter could 
allow hybrid interpretation during development 
while enabling compilation for production, combining 
Python's fast development speed with the 
performance of native code. 

The broader context of compiling Python to native 
code makes this work significant. Projects like Numba 
and Triton use similar methods on a larger scale. 
Learning how simple arithmetic compiles to LLVM IR 
lays the groundwork for understanding how these 
more complex systems function. 

CONCLUSION 

This work presents a functional compiler that 
translates arithmetic expressions to native machine 
code using LLVM infrastructure. The implementation 
shows that modern compiler tools make compilation 
projects easier for developers with moderate 
experience. By using llvmlite to access LLVM's 
compilation pipeline, the project achieves native code 
generation without complicated optimization and 
code generation phases. 

The compiler correctly handles operator precedence, 
supports parenthetical grouping, performs compile-
time error checking, and generates efficient assembly 
code. The architecture follows standard compiler 
design, with lexical analysis, parsing, and code 
generation as separate stages. The visitor pattern 
allows for extending AST processing without changing 
node classes. Strong typing throughout catches errors 
early in development. 

The project started from observations during a 
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lecture and evolved through multiple iterations. 
Initial stack-based assembly generation shifted to 
LLVM-based compilation after researching available 
tools. Code reuse from the Gustav interpreter project 
shows how front-end components can be shared 
between interpreters and compilers. 

The results indicate that the generated code is correct 
and efficient. LLVM's optimizations produce assembly 
that is comparable to hand-written code. The system 
compiles expressions quickly and works well with 
standard build tools. Error messages provide enough 
information for users to identify and fix problems. 

Future work will add variables, control flow, and 
functions to the language. Integrating with the Gustav 
interpreter would allow for hybrid interpretation and 
compilation. Experiments with optimization passes 
could show LLVM's transformation capabilities. The 
foundation established here supports these 
extensions while also serving as a valuable standalone 
demonstration of compilation techniques. 

The importance of this work goes beyond the specific 
implementation. Understanding how arithmetic 
expressions compile to native code offers insight into 
how larger systems like Numba and Triton operate. 
This project demonstrates that compiler 
construction, often seen as specialized and 
challenging, can be tackled step by step using modern 
tools. This accessibility benefits both education and 
the development of new language implementations. 
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