

The Properties and Applications of Bentonites

Joldasova Simbat Jangabaevna

Trainee- teacher of the Department of Physical and Colloid Chemistry of KSU, Uzbekistan

Received: 25 June 2025; Accepted: 21 July 2025; Published: 23 August 2025

Abstract: Bentonite, a naturally occurring clay mineral composed mainly of montmorillonite, exhibits distinctive properties such as swelling capacity, cation exchange, and colloidal stability. These characteristics make it one of the most versatile industrial minerals. Formed through the alteration of volcanic ash, bentonite occurs in two primary types: sodium bentonite, with high swelling ability, and calcium bentonite, with greater structural stability. This distinction directly influences its wide-ranging applications. In petroleum drilling, sodium bentonite is indispensable for stabilizing boreholes and forming drilling muds, while in foundries it ensures mold integrity at high temperatures. In civil engineering, it serves as a barrier in slurry walls and dam construction, and in environmental protection it acts as a natural liner to prevent contamination. Calcium bentonite contributes to agriculture by improving soil fertility and water retention, while both types are used in pharmaceuticals and cosmetics for their absorbent and non-toxic qualities. Recent studies also highlight bentonite's potential in nanotechnology, renewable energy, and pollutant remediation. Its abundance, sustainability, and adaptability underline its ongoing industrial and ecological significance.

Keywords: Bentonite, montmorillonite, sodium bentonite, calcium bentonite, drilling fluids, environmental sustainability, industrial applications.

INTRODUCTION:

Bentonite, a naturally occurring clay composed predominantly of montmorillonite, has long been a subject of scientific interest and industrial utilization. Scholars such as Grim and Murray have emphasized that its unique physical and chemical properties, particularly its swelling ability, cation exchange capacity, and suspension-forming potential, make it one of the most versatile industrial minerals of the modern age. As industrial demands evolve, bentonite continues to occupy a central role across sectors as petroleum drilling, diverse as environmental engineering, pharmaceuticals, and agriculture. Importantly, bentonite serves as a natural link between geology, technology, and sustainability, making it both a resource for economic progress and a solution to ecological challenges [3; 4].

When analyzing bentonite, it is not enough to examine its properties in isolation; rather, it is essential to connect its geological origins, structural features, and applications in a comprehensive manner. Only then can its strategic role in global industries and environmental protection be fully understood. By tracing its formation from volcanic

processes, analyzing its classification into sodium and calcium types, and evaluating its applications across multiple domains, we can appreciate how this mineral serves as a cornerstone of industrial civilization while also being aligned with sustainable development goals.

The formation of bentonite is closely tied to volcanic processes, since it arises from the alteration of volcanic ash under hydrothermal or weathering conditions. This transformation leads to the dominance of montmorillonite, a phyllosilicate mineral characterized by its layered structure and remarkable capacity for hydration. The geological distribution of bentonite is global, with significant reserves located in the United States (particularly in Wyoming), Turkey, China, India, and Central Asia [5, 1-11].

However, bentonite is not uniform. Its variability in mineralogical composition, structural arrangement, and chemical reactivity is a direct reflection of the parent volcanic material and the environmental conditions of alteration. This diversity results in two primary classifications: sodium bentonite, which

American Journal of Applied Science and Technology (ISSN: 2771-2745)

exhibits high swelling capacity and superior colloidal properties, and calcium bentonite, which demonstrates less swelling but enhanced stability under certain conditions. The distinction is not merely geological; instead, it has direct implications for industrial suitability, meaning that the type of bentonite extracted in a given region determines its market orientation and strategic economic value.

Bentonite's extraordinary utility derives from its unique structural arrangement. Montmorillonite consists of a layered structure with two tetrahedral sheets of silica surrounding a central octahedral sheet of alumina. This arrangement allows for the intercalation of water and other molecules, which in turn creates its swelling and absorption capacity. Additionally, the mineral exhibits a high cation exchange capacity (CEC), which enables it to absorb and exchange positively charged ions such as sodium, calcium, and magnesium.

These structural features are not abstract concepts but rather practical determinants of bentonite's performance. For example, the swelling capacity of sodium bentonite allows it to create impermeable barriers in construction and waste management, while the lower swelling but higher structural stability of calcium bentonite makes it more suitable for applications requiring thermal resistance, such as foundry molds. Thus, the connection between atomic-scale structure and large-scale engineering performance illustrates the multi-dimensional value of bentonite.

The industrial significance of bentonite cannot be overstated. It has become deeply embedded in several key economic sectors, each of which relies on its distinctive properties.

In the oil and gas industry, bentonite is indispensable as a drilling fluid additive. Its thixotropic suspensions provide lubrication and cooling for drill bits while simultaneously stabilizing boreholes and preventing fluid loss into surrounding formations. Without bentonite, modern deep drilling operations would face severe technical challenges, underscoring how a naturally formed mineral underpins one of the most advanced technological fields.

Equally important is the role of bentonite in foundries, where it acts as a binding agent in molding sands. Here, the mineral ensures that molds retain their shape under high temperatures and mechanical

stress. This is particularly relevant for steel and iron casting industries, where precision and stability are crucial. The ability of bentonite to bind and stabilize under extreme conditions directly connects mineralogical science with industrial manufacturing.

In civil engineering, bentonite finds widespread application in the construction of slurry walls, tunnels, and dams. Its impermeability and plasticity make it an effective barrier against groundwater infiltration, while its swelling properties ensure long-term stability. For instance, in urban environments where underground construction intersects with aquifers, bentonite-based slurry walls prevent contamination and flooding, thereby linking geology with urban planning and sustainable infrastructure development.

Perhaps one of the most significant contemporary roles of bentonite lies in environmental sustainability. Sodium bentonite is widely used in landfill liners and hazardous waste repositories, where it forms impermeable barriers that prevent leachates from polluting soil and groundwater. In this way, bentonite functions as a natural safeguard, connecting industrial waste management with ecological protection. Moreover, bentonite is increasingly being investigated for its potential in pollutant adsorption and remediation of contaminated water, further expanding its environmental role [1, 11-65].

Bentonite also plays a vital role in agriculture. Its capacity to retain moisture and improve soil structure supports crop productivity, especially in arid regions where water conservation is essential. Calcium bentonite, in particular, is effective as a soil conditioner, improving nutrient availability and reducing erosion. This application demonstrates how bentonite links natural resource management with food security, making it an indirect contributor to human survival.

Beyond heavy industries, bentonite has penetrated the fields of pharmaceuticals and cosmetics. It is employed as a binder in tablets, as an excipient in drug delivery, and as an absorbent in skincare products. Its non-toxic, absorbent, and stabilizing properties illustrate the versatility of the mineral and its ability to connect geology with human health and well-being.

The applications can be summarized in the following table:

Application Area	Function Bentonite	of	Type Used	Key Advantage
Oil & Gas Drilling	Drilling	mud	Sodium	High swelling and

American Journal of Applied Science and Technology (ISSN: 2771-2745)

	additive		thixotropy
Foundry Industry	Molding sand	Calcium/Sodium	High temperature
	binder		stability
Construction &	Slurry walls,	Sodium	Impermeability,
Engineering	dams, tunnels		plasticity
Environmental	Landfill liners,	Sodium	Prevents
Protection	waste barriers		contaminant leakage
Agriculture	Soil	Calcium	Improves fertility
	conditioner, moisture		and crop yield
	retention		
Pharmaceuticals &	Tablet binder,	Calcium/Sodium	Non-toxic,
Cosmetics	skin care		absorbent

Although bentonite has a long history of industrial use, research continues to uncover new applications. For instance, in nanotechnology, modified bentonite clays are being studied as carriers for drug delivery systems, adsorbents for heavy metals, and catalysts for chemical reactions. In renewable energy, bentonite is being considered for use in fuel cells and as a stabilizer in bioenergy production. These innovations connect traditional uses of bentonite with cutting-edge science, illustrating its potential to remain a cornerstone of technological progress.

Furthermore, the increasing global emphasis on sustainability highlights bentonite's importance as an environmentally friendly material. Unlike many synthetic alternatives, bentonite is abundant, nontoxic, and recyclable. This positions it as a strategic resource for green technologies and circular economies, thereby ensuring its relevance in both present and future industrial landscapes.

CONCLUSION

In conclusion, bentonite emerges as more than just a clay mineral; it is a vital link between natural geological processes and human technological advancement. Its unique properties, derived from montmorillonite's layered structure, translate into a broad spectrum of applications that range from drilling and construction to environmental protection and pharmaceuticals. Moreover, the mineral's significance is amplified by its role in sustainability, where it functions as a natural barrier against contamination and as a tool for soil improvement and water conservation.

REFERENCES

Al-Ani, T., & Sarapää, O. (2008). Clay and clay

mineralogy. Physical-chemical properties and industrial uses, 11-65.

Brindley, G. W. (1981). Clays, clay minerals. In Mineralogy (pp. 69-80). Springer, Boston, MA.

Grim, R. E. (1942). Modern concepts of clay materials. The Journal of Geology, 50(3), 225-275.

Murray, H. H. (1991). Overview—clay mineral applications. Applied clay science, 5(5-6), 379-395.

Zhang, J. R., Xu, M. D., Christidis, G. E., & Zhou, C. H. (2020). Clay minerals in drilling fluids: functions and challenges. Clay Minerals, 55(1), 1-11.