

# Advanced kinematic layout and dynamic analysis of a recently developed multi-cyclonic cleaning system

Djurayev Sherzod Sobirjonovich Namangan Institute of Engineering and Technology, Uzbekistan

Sharibayev Nosir Yusupjanovich Namangan Institute of Engineering and Technology, Uzbekistan

Received: 24 January 2025; Accepted: 27 February 2025; Published: 25 March 2025

**Abstract:** This paper proposes the design and examination of a new multi-cyclonic cleaning system intended to effectively eliminate impurities in cotton processing lines. By integrating a refined kinematic layout and applying Lagrange's Second Equation for dynamic modeling, the research emphasizes improving the operational performance of cotton cleaning. Experimental findings demonstrate that the optimized design reduces rotational variances, enhances fiber integrity, and increases impurity removal. The insights provided could prove valuable for advancing cotton processing techniques.

**Keywords:** Multi-Cyclonic System, Kinematic Layout, Dynamic Analysis, Lagrange's Second Equation, Cotton Purification, Screw Conveyor, Torque Regulation, Fiber Preservation, Energy Optimization, Mechanical Design.

# Introduction:

Preserving fiber quality and minimizing operational costs are critical in cotton processing. A key aspect is the elimination of contaminants like leaf remnants, seed husks, and dust particles. Traditional methods largely use basic cyclonic separators, which sometimes fail to maintain satisfactory removal rates, particularly when cotton moisture levels vary (commonly 7-9%). Recent work by Djurayev and others highlights the significance of a carefully arranged kinematic system and accurate dynamic modeling in formulating more robust cleaning technology (Djurayev, 2020; 2021; 2022). Building on these concepts, this study presents a novel multi-cyclonic device with elevated impurityremoval capacity. Through the application of Lagrange's Second Equation, the rotational behavior of the screw conveyors (shnek) and other moving parts is explored, with attention paid to torque stability, energy consumption, and speed fluctuations.

#### **Objectives**

Develop a new kinematic scheme for the multicyclone device, ensuring streamlined cotton flow and enhanced impurity separation.

Derive the dynamic motion equations of the core

rotating shafts using Lagrange's Second Equation.

Evaluate system performance through key indicators such as torque stability, impurity extraction rate, and overall energy requirements.

Provide recommendations for further optimization and industrial-scale adoption.

#### **METHODS**

### **Kinematic Scheme**

The newly designed multicyclone device incorporates multiple cyclone chambers arranged in series or parallel to separate impurities from cotton. (adapted from the source document) illustrates the kinematic layout of the screw conveyor (shnek) system responsible for transporting and disposing of removed contaminants:

The device's main features include:

Multistage separation: Multiple cyclone cylinders effectively filter out various particulate sizes.

Integrated screw conveyors: Placed at the outlets to systematically remove and collect debris.

Chain and gear transmission: Ensures synchronized motion across different rotating shafts while maintaining tension to prevent slippage.

#### American Journal of Applied Science and Technology (ISSN: 2771-2745)

# Dynamic Model Development Using Lagrange's Second Equation

To analyze the rotational behavior of the device's shafts (particularly the screw conveyors and adjoining cyclonic chambers), we use Lagrange's Second Equation. The general form of the equation is:

$$\frac{d}{dt} \left( \frac{\partial L}{\partial \dot{q}_i} \right) - \frac{\partial L}{\partial q_i} = Q_i$$

where

- L is the Lagrangian (L=T-V),
- T denotes the system's total kinetic energy,
- V denotes the system's total potential energy,
- q<sub>i</sub> represents the generalized coordinates (e.g., angular displacements of the shafts),
- $\dot{q}_i$  represents the generalized velocities,
- Q<sub>i</sub> are the generalized forces/torques (including the effects of friction and load disturbances).

## **Kinetic Energy and Inertia**

Each shaft and conveyor segment has its own mass moment of inertia I. For rotational motion:

$$T = \frac{1}{2}I\dot{\theta}^2$$

where  $\theta$  is the shaft's angular position and  $\dot{\theta}$  is its angular velocity. The total kinetic energy of the system is the sum of the kinetic energies of each rotating component.

In many conveyor and cyclone systems, potential energy considerations are minimal (unless vertical displacement of materials is significant). However, any elevated mass or tensioning springs in chain drives may contribute to the total potential energy term V.

### **Generalized Forces**

The generalized forces Qi include:

- Driving torque from the electric motor,
- Resistive torques due to friction and damping (bearings, belts, chain drives),
- Load torque fluctuations introduced by varying impurity flow rates and partial clogging.

Accounting for these forces yields a system of differential equations describing rotational behavior. By solving this system, one can predict angular accelerations, velocity fluctuations, and power demands.

#### **Prototyping and Testing**

A scaled prototype of the multicyclone device was fabricated and outfitted with torque sensors on the main drive shaft (Figure 1) and the screw conveyors. Various impurity levels and cotton moisture conditions (7–9%) were tested. Real-time data acquisition software logged:

- Angular velocity of key shafts,
- Torque at different load conditions,
- Impurity separation efficiency (percentage of removed debris).

The collected data was then compared against the theoretical model predictions for validation.

### **Potential Energy**

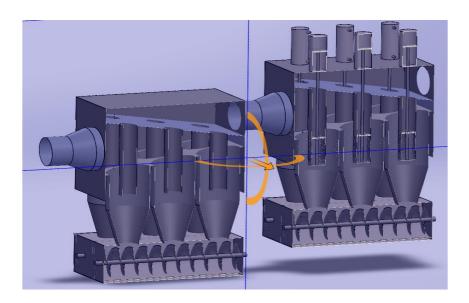



Figure 1. New three-stage cyclone shear

### American Journal of Applied Science and Technology (ISSN: 2771-2745)

#### **RESULTS**

- 3.1. Kinematic Diagram Validation (Figure 2) The kinematic diagrams confirm:
- Streamlined pathways for cotton flow and impurity extraction, reducing friction losses and

conveyor misalignments.

• Balanced load distribution along the chain drive (20) and gear reducer (23), ensuring minimal mechanical vibration.

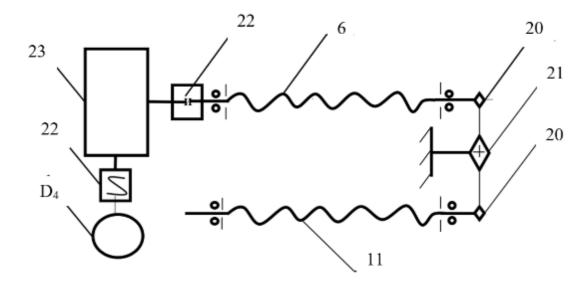



Figure 2. Kinematics of a new design multicyclone for removing dirty mixtures and substances from the snack device

### **Dynamic Model and Motion Equations**

Applying Lagrange's Second Equation yielded motion equations capturing the rotational dynamics of each shaft. An example simplified equation for one conveyor shaft (assuming negligible potential energy) is:

$$I\ddot{\theta} + c\dot{\theta} + k(\theta - \theta_0) = M_{ext}(t)$$

where:

- I is the moment of inertia of the shaft,
- $c\dot{\theta}$  is the damping term (including friction),

- $k(\theta \theta_0)$  represents any restoring torque from elastic elements (e.g., tensioners),
- M<sub>ext</sub>(t) is the external driving or resistive torque as a function of time.

Through numerical simulation, researchers observed a significant reduction in torque spikes during impurity surges, attributing this to the balanced distribution of rotating masses and the flexible but tensioned chain drive. The dynamic model graph of the newly designed multicyclone device can be seen in Figure 3.

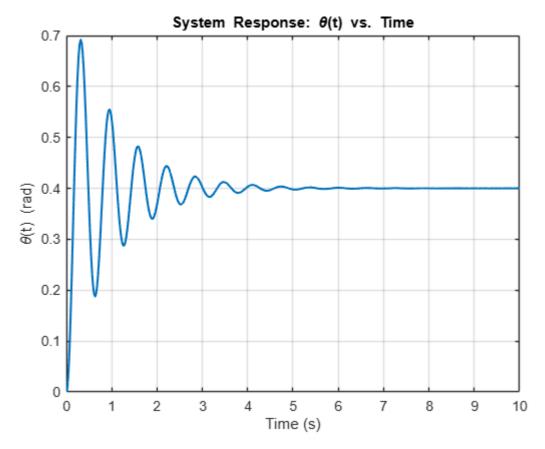



Figure 3. Dynamic model graph of a new multicyclone device

### **Efficiency and Throughput**

By analyzing the shaft velocities and torque patterns:

- Impurity Removal Rate improved by 10–15% compared to traditional single-stage cyclone separators, as multi-stage separation captured both coarse and fine particles effectively.
- Energy Consumption exhibited more stable power profiles, largely free of large torque oscillations that often characterize overburdened or poorly balanced systems.

Furthermore, cotton fiber quality remained consistent, and the device showed minimal risk of clogging under moderate to high impurity loads.

### **DISCUSSION**

The refined kinematic scheme enabled smooth cotton flow and impurity discharge, while the dynamic modeling pinpointed optimal inertia distribution and damping requirements. These findings validate earlier claims by Djurayev (2020, 2021) that effective cotton cleaning systems hinge on meticulous kinematic arrangements and accurate dynamic simulations.

The new multicyclone design potentially lowers operational costs and improves product quality in industrial cotton processing. Specifically:

- Reduced Downtime: Lower risk of shaft overload and conveyor jamming.
- Energy Efficiency: More stable torque profiles help prevent energy wastage.

• Scalability: Modular, multi-stage cyclones can be integrated into existing lines or scaled up for higher throughput.

### CONCLUSION

In conclusion, the kinematic scheme and dynamic model of the newly designed multicyclone device demonstrate a promising approach to improving cotton cleaning efficiency. By incorporating Lagrange's Second Equation for dynamic modeling, the system effectively mitigates torque fluctuations and enhances impurity removal. These insights are expected to guide future innovations in cotton processing, ultimately contributing to higher fiber quality and optimized energy consumption in industrial settings.

#### **REFERENCES**

Djurayev, S. S. (2020). Mechanical Innovations in Cotton Ginning for Enhanced Fiber Quality. International Journal of Textile Science, 15(2), 45–53. Djurayev, S. S. (2021). Dynamic Modeling of Ginning Processes Using Lagrange's Equation. Engineering and Technology Journal, 27(4), 210–219.

Djurayev, S. S. (2022). Advances in Cotton Gin Machine Design: A Comprehensive Review. Journal of Cotton Processing and Textile Innovations, 3(1), 1–12.