VOLUME 02 ISSUE 05 Pages: 45-50

SJIF IMPACT FACTOR (2021: 5.705) (2022: 5.705)

OCLC - 1121105677 METADATA IF - 5.582

Publisher: Oscar Publishing Services

Website: https://theusajournals. com/index.php/ajast

Copyright: Original content from this work may be used under the terms of the creative commons attributes 4.0 licence.

EXPERIMENTAL DETERMINATION OF HYDRAULIC RESISTANCE OF WET METHOD DUSHANGER AND GAS CLEANER

Submission Date: May 01, 2022, Accepted Date: May 10, 2022,

Published Date: May 22, 2022

Crossref doi: https://doi.org/10.37547/ajast/Volume02lssue05-09

Nasimbek Ergashev

PhD in Technical Sciences, Fergana Polytechnic Institute, Fergana, Republic of Uzbekistan

Khalilov Ismoil

Assistent, Fergana Polytechnic Institute, Fergana, Republic of Uzbekistan

Mamarasulov Baxtior

Magistr, Fergana Polytechnic Institute, Fergana, Republic Of Uzbekistan

ABSTRACT

The article recommends the hydrodynamic modes of the wet dust collection and gas cleaning apparatus. The results of an experimental study on the determination of hydraulic resistance in a wet dust collector and gas purifier are presented. In studying the effect of the working bodies on the gas flow, defined and comparative graphs were constructed for different values of hydraulic resistance and variable factors. Empirical formulas were obtained to adequately describe the process using the least squares method for experimental results and graphical dependencies.

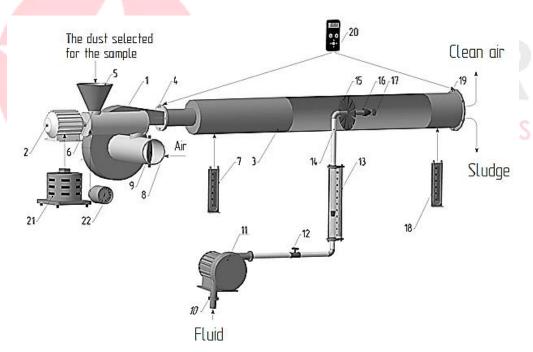
KEYWORDS

Wet method, contact element, coefficient of resistance, reference angle, hydraulic resistance, torsional motion, gas flow, gas velocity.

VOLUME 02 ISSUE 05 Pages: 45-50

SJIF IMPACT FACTOR (2021: 5.705) (2022: 5.705)

OCLC - 1121105677 METADATA IF - 5.582



Publisher: Oscar Publishing Services

INTRODUCTION

With the development of industrial enterprises around the world, pollution of the environment with dust and toxic gases is also increasing. It is therefore the only way to protect the environment and find solutions to industrial problems. There are several types of dust and toxic gases emitted from industrial plants, and the unfortunate one is the presence of toxic substances among them that have toxic properties. At present, enterprises use devices of various constructions to clean dust and toxic gases. One of the most effective ways to clean dust and toxic gases from manufacturing plants is wet cleaning, which uses a number of designs of this type of equipment. Various contact elements are used to soak dusty gases in the devices used. However, the low efficiency of the contact elements, hydrodynamic resistance, low efficiency of dust removal from the resulting sludge does not allow optimal use of the apparatus. Therefore, in order to achieve 100% results in wet dust cleaning, it is advisable to ensure the interaction of liquid and dust with each other and to select the optimal options of hardware hydrodynamics [1,2,3]. In order to solve these problems, we conducted experimental studies to determine the coefficient of resistance in the apparatus through the liquid and gas flow in the wet dust collection and gas cleaning apparatus, designed and developed by us. [4,5,6]. Figure 1 below shows an overview of the apparatus.

1 – fan; 2 – electromotor; 3 – metal pipe; 4 –10 – 19 Flanges; 5 – dust collector; 6 – dust supplier; 7,18 – Pito Prandl tube; 8-dusty air inlet lane 9 – stacker 11 – Pump; 12 – valve; 13 – rotameter; 14 – water supply pipe; 15 – gas flowforming element; (fluorite) 16 – stutter of fluid; 17 – water repellent; 20 – anemometer electronic meter; 21 – electromotor speed control apparatus; 22 – Instrument showing the velocity.

Figure 1. Total view of experimental device

VOLUME 02 ISSUE 05 Pages: 45-50

SJIF IMPACT FACTOR (2021: 5.705) (2022: 5.705)

OCLC - 1121105677 METADATA IF - 5.582

Publisher: Oscar Publishing Services

The following equipment and apparatus were selected as the experimental model in determining the gas velocity, flow rate, flow regime and local resistance coefficients in the wet dust collection and gas cleaning apparatus. Centrifugal fan; work productivity Qmax=360 m3/ hour; Electromotive force NDV=0,7 kW; number of revolutions n=1200 rpm; Pito prandl tube 100 mm dimensional; The pipe has 2 prandl tubes with an inner diameter of 7 mm, which determine the static and dynamic forces; Anemometer VAo6-TROTEC (error coefficient at measuring range 1.1÷50 m/s, error coefficient up to 5 % when the gas velocity exceeds 50 m/s) to determine the velocity of dusty gas supplied to the experimental model electronic meter; metal pipe with D = 100 mm, L = 1200 mm in determining the gas velocity.

One of the main parameters that determine the stable operation of dust gas cleaning in the apparatus is its hydraulic resistance. Therefore, in determining the gas velocity, a suction tube was installed at an angle of oo, 300, 450, 600, 900 to the suction tube of the fan. The main reason for this is to determine the coefficients of hydraulic resistance of the apparatus at different velocities of the gas and thus to conduct experimental studies.

Each experiment was performed 5 times and the arithmetic mean value of the detected quantities was selected. (The kinematic viscosity of the air was assumed to be 1,51 • 10-5 m2/s).

In the experimental determination of the gas velocity, each experiment was repeated five times, and the square dimensions of each point and the resulting errors were determined. The directing angle of the contact element, which moves the gas flow to the device, is α=300; Experimental studies of gas velocities were carried out, each of which was set to 450 and 600 (swirler).

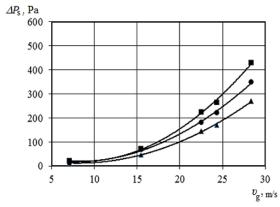
The device is equipped with a contact element that moves in the direction of the gas flow with a reference angle α =300 (swirler) and the pressure when the gas inlet speed is $v=7,07 \div 28,37$ m/s and the outlet speed is υ=3,2÷11,03 m/s. 21,2 Pa and 430 Pa each; When the contact speed of the contact element, which moves in the gas flow, is set to the angle of α =450 (swirler), the gas inlet speed is up to $v=7,07 \div 28,37$ m/s and the outlet speed is up to $v=3,6\div12,3$ m/s when the pressure is from 14.8 Pa to 350 Pa and the inclination of the device is α =600, the contact element (swirler) is installed and the gas inlet speed is v=7,07÷28,37 m/s and the outlet speed is v=3,8 experimental studies have shown that the pressure ranged from 12 Pa to 270 Pa at 13.1 m/s.

In Figure 2 below, the angle of contact of the contact element, which moves the wet dust collector and gas cleaning device in the absence of liquid, is $\alpha=300$; A graph of the pressure change depending on the gas velocity at 450 and 600 (swirler) is given.

VOLUME 02 ISSUE 05 Pages: 45-50

SJIF IMPACT FACTOR (2021: 5.705) (2022: 5.705)

OCLC - 1121105677 METADATA IF - 5.582



Publisher: Oscar Publishing Services

1 - when the angle of inclination of the contact element is 60°; 2 - when the angle of inclination of the contact element is 45°; 3 - when the angle of inclination of the contact element is 30°;

Figure 2. The hydraulic resistance of a non-liquid apparatus depends on the gas velocity v_g of ΔP_{nl}

The average change in gas velocity for each indicator increased by a step of 4 m/s. The reference angle $\alpha=30^{\circ}$ of the contact element acting on the gas flow installed in the apparatus; The following hydraulic resistances in the apparatus were determined by the gas velocities supplied at 45° and 60° (swirler).

Hydraulic resistance ξ_1 =2,2 when the contact angle of the contact element, which moves the gas flow to the device, is $\alpha=30^{\circ}$; the hydraulic resistance $\xi_1=2$ when the contact angle of the contact element moving in the gas flow is $\alpha=45^{\circ}$; it was found that the hydraulic resistance ξ_1 =1,8 when the reference angle of the contact element moving in the gas flow is $\alpha=60^{\circ}$.

The graphical relationships shown in Figure 2 can be expressed by the following empirical formulas determined by the least squares method [7,8,9]. On the dependence of the gas velocity $v_{\rm g}$ on the hydraulic resistance ΔP_{nl} in a non-liquid apparatus;

In this case, the total resistance coefficient of the device is 1.8 when the angle of inclination of the surface through which the gas flow passes $\sin\theta=30^{\circ}$; experiments have shown that $\sin \theta = 45^{\circ}$ is equal to 2 and $\sin\theta=60^{\circ}$ is equal to 2.2.

Figure 3 shows graphs of the coefficient of resistance depending on the angle of inclination of the gas flowing surface.

VOLUME 02 ISSUE 05 Pages: 45-50

SJIF IMPACT FACTOR (2021: 5.705) (2022: 5.705)

OCLC - 1121105677 METADATA IF - 5.582

Publisher: Oscar Publishing Services

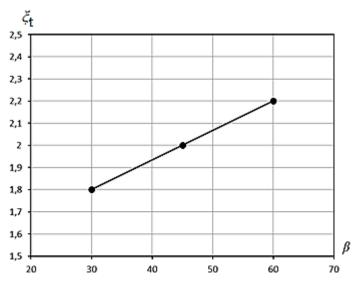


Figure 3. The dependence of the total resistance coefficient b on the angle of inclination b of the surface through which the raw gas flow passes

The following empirical formulas were obtained by determining the graphical dependences shown in Fig. 3 by the least squares method [10-12].

According to the dependence of the total resistance coefficient ξ_t on the angle of inclination θ of the passing surface of the humus gas flow.

$$y = 0.0133x + 1.4$$

$$R^2 = 0,9978$$
 (1.4)

The obtained experimental results show that the reference angle $\alpha=30^{\circ}$; of the contact element acting on the gas flow installed in the apparatus; The hydraulic resistances of the apparatus were determined by 45° and 60°.

In this case, the suitability of the device for the selection of the optimal gas velocity based on the overall size and gas velocity was determined experimentally, using the angle-forming gate, contact

elements (swirler) and the correlation of the resistance coefficient.

REFERENCES

- **1.** Алиматов Б.А., Эргашев Н.А., Каримов И.Т. (2019). Контакт элементи буралган йўлдош қуюнли режимда ишловчи ҳўл усулда чанг тозаловчи аппарат. Илмий-техника журнали, 2, 149-152.
- 2. Сугак, Е. В., Войнов, Н. А., & Николаев, Н. А. (2009). Очистка газовых выбросов в аппаратах с интенсивными гидродинамическими режимами.
- 3. Эргашев Н.А., Алиматов Б.А., Герасимов М.Д., Дикевич А.В. "Повышение эффективности пылеулавливания в производстве дорожностроительных материалов" "Энергоресурсосберегающие машины, оборудование и экологически технологии дорожной и строительной отраслях" Международная

VOLUME 02 ISSUE 05 Pages: 45-50

SJIF IMPACT FACTOR (2021: 5.705) (2022: 5.705)

OCLC - 1121105677 METADATA IF - 5.582

Publisher: Oscar Publishing Services

конференция (Россия научно-практическая федерация Белгород, 20-21 сентября 2018 й) 228-232 бет:

- 4. К.Ш. Латипов. (1992). Гидравлика, гидромашина, гидроюритмалар. Тошкент, Ўқитувчи, 75-80.
- А.И. **5.** Кобзарь (2006).Прикладная математическая статистика. Для инженеров и научных работников. Москва: Физматлит, 816 с.
- 6. Выгодский, М. Я. (1972). Справочник по высшей математике. Рипол Классик. 872 с.
- Эргашев, Н. (2020). Исследование гидравлического сопротивления пылеулавливающего устройства мокрым способом. Universum: технические науки, (4-2 (73)), 59-62.
- **8.** Эргашев, Н. А., Маткаримов, Ш. А., Зияев, А. Т., Тожибоев, Б. Т., & Кучкаров, Б. У. (2019). Опытное определение расхода газа, подаваемое на пылеочищающую установку контактным работающим элементом, режиме спутникового вихря. Universum: технические науки, (12-1 (69)).
- 9. Ergashev, N. A. (2020). Determination hydraulic resistance of device that has the vortex flow creating contact element. Austrian Journal of Technical and Natural Sciences, (3-4).
- **10.** Эргашев, Н. А., Алиматов, Б. А., & Дикевич, А. В. (2018). Затраты энергии мокром дорожнопылеуловителе при производстве материалов. строительных ln Энерго-, ресурсосберегающие машины, оборудование и экологически чистые технологии в дорожной и строительной отраслях (рр. 232-238).

- 11. Алиматов, Б. А., & Эргашев, Н. А. Гидравлическое сопротивление пылеуловителя с прямоточновихревыми контактными элементами. " Энергоресурсосберегающие технологии оборудование в дорожной и строительной отраслях": материалы междуна. конф.
- 12. Ergashev, N., & Halilov, I. (2021). Experimental determination length of liquid film in dusty gas cleaner. Innovative Technologica: Methodical Research Journal, 2(10), 29-33.

